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1

Introduction

Psychometrics is a field of study connected to psychology, educa-
tion and statistics. It deals with the design, administration, analy-
sis and interpretation of tests for the measurement of psychological
variables such as intelligence, aptitude, personality traits and abil-
ities. Further, psychometrics has been used in measuring academic
achievement and in health related fields, for example, to measure
quality of life.

Psychometric methods have several orientations. Pioneers of psy-
chometrics first developed classical test theory (CTT) and then more
recent the item response theory (IRT). CTT can be characterized as
the theory of measurement errors. The key concepts involve reliabil-
ity and validity and both can be assessed mathematically. A reliable
measure is measuring something consistent while a valid measure is
measuring what it is supposed to measure. The major applications
of CTT are item and test analyses and observed score equating. On
the other hand, IRT can be characterized as a class of probabilistic
models for responses of persons to test items. The main focus of this
thesis will be on IRT.



2 1. Introduction
1.1 Ttem Response Theory

Item response theory (IRT) is a class of probabilistic or stochastic
models for two-way data, say, the responses of persons or individu-
als to test items. An important feature of IRT models is parameter
separation, which means that the influences of the test items and
persons on the responses are modeled by distinct sets of parameters.
In IRT, the performance of a person (an examinee) on a test item can
be explained by a set of factors called latent traits or abilities. The
relationship between a person’s item response and the set of traits
underlying them can be described an item characteristic curve (ICC)
that gives the response probabilities as a function of the latent traits.
For dichotomously scored items, this curve is usually monotonically
increasing. This curve specifies that as the level of the ability in-
creases, the probability of a correct response to an item increases
also.

Under unidimensional IRT models for dichotomous items, the prob-
ability of a correct response depends on the persons’ unidimensional
ability, say 0, and the parameters that characterize the item. Pop-
ular models for items with dichotomous responses are the one,two
and three normal ogive models and the one,two and three parameter
logistic models namely the Rasch model (1PLM; Rasch, 1960), two
parameter logistic model (2PLM; Birnbaum, 1968) and the three
parameter logistic model (3PLM). For items with polytomous re-
sponse, models such as the nominal response model (Bock, 1972),
graded response model (Samejima, 1969) and partial credit model
(Masters, 1982) are used. There are also available models that han-
dle multidimensional cases if items appear to be sensitive to more
than one ability (multidimensional IRT; McDonald 1967, Lord &
Novick, 1968). Further, IRT models are available for nonmonotone
items.

IRT provides a useful framework of solving a wide variety of mea-
surement problems ranging from test construction, to reporting of
test scores. Evidence of its importance can be found in the study of
differential item functioning (for multiple groups) , person fit analy-
sis, computerized adaptive testing, item banking, structural item re-
sponse modeling (e.g. Multilevel IRT modeling, see Fox, 2001), test
equating and the handling of missing data i.e. modeling and detect-
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ing nonignorable missing data processes using IRT models (Holman
& Glas, 2005). The latter application is the focus of this thesis.

The first step in applying item response theory to test data is that
of estimating the parameters that characterize the chosen item re-
sponse model. In fact, the successful application of item response the-
ory depends on the availability of satisfactory procedures for estimat-
ing the parameters of the model. Estimation procedures that can be
employed to obtain parameter estimates using IRT models are avail-
able using both likelihood based and Bayesian methods. Likelihood
based methods are the joint maximum likelihood estimation (JML),
conditional maximum likelihood estimation (CML) and marginal
maximum likelihood estimation (MML) employ inferences. These
methods are used in software packages as BILOG-MG (Zimowski,
Muraki, Mislevy & Bock,1996), MULTILOG, TESTFACT (Wilson,
Wood & Gibbons, 1991), MPLUS (Muthén & Muthén ,1998) ,OPLM
(Verhelst,Glas & Verstralen,1995) and ConQuest (Wu, Adams &
Wilson, 1997). The alternative method, Bayesian estimation meth-
ods, employ inferences from posterior distributions. It has been adopt-
ed to the estimation of IRT models with multiple raters, multi-
ple item types, missing data (Patz, & Junker; 1999a, 1999b), test-
let structures (Bradlow, Wainer & Wang, 1999), and models with
multi-level structure on the ability parameters (Fox & Glas, 2001).
The unifying theme of these applications is the use of a Markov
chain Monte Carlo (MCMC) algorithm for making Bayesian infer-
ences. Most widely used MCMC methods are the Gibbs sampler and
the Metropolis-Hasting algorithm. The software packages WinBUGS
(Lunn, Thomas, Best, & Spiegelhalter (2000) and MLIRT (available
in the web) are some of the available software packages that employ
Bayesian estimation methods in IRT.

The second step in applying item response theory to test a data
is that of testing the validity of the item response models. A given
item response model may or may not be appropriate for a particular
set of test data, that is, the model may not adequately predict or
explain the data. Hence essentially, in any IRT application, there is
in a need to assess the fit of the model to the data. Model fit has two
aspects: item fit and person fit. In the first case, the assumptions
evaluated are differential item functioning, the form of the item re-
sponse curve and local stochastic independence. Test statistics have
been proposed by such authors as Mokken (1971), Andersen (1973),
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Yen (1981, 1984), Molenaar (1983), Glas (1999), and Orlando and
Thissen (2000). An overview is given by Glas and Sudrez-Falcon
(2003). Person fit statistics usually focus on the constancy of abil-
ity across the test. Examples are the person fit statistics by Smith
(1986), and Snijders (2001). An overview is given by Meijer and Si-
jtsma (1995; 2001).

1.2 Missing data and Ignorability

Statistical analysis of a given data set will be more complicated in
the presence of missing data. Standard methods are not directly
applicable if these missing data are present. Therefore, there is a
growing interest in the statistical methods that properly account
for incomplete data (Little & Rubin, 1987). In behavioral sciences
and educational measurement settings, for instance, the type of in-
completeness that has been studied thoroughly is missing data due
to incomplete designs and random missing data such as unit and
item nonresponse cases. Individuals for which all responses are miss-
ing are called unit nonresponse while individuals for which only the
responses to particular items are missing are as known item non-
response cases. Huisman (1999) studied the occurrence, causes and
ways to handle the statistical inferences of item nonresponses. He
investigated the nature of missing data patterns and found methods
to handle missing data in test items through imputations.

In literature, four common ways to handle missing data are dis-
cussed. First, there is the practice of deleting cases with missing
data (listwise or pairwise) before doing the actual analyses. Drop-
ping cases with missing values may occasionally be appropriate, but
usually this approach has its hazards. The effect of such a practice
will reduce the sample size, which leads to inefficient estimation, and
it may lead to biased estimates if the missingness is systematic, for
instance, if the missing data are correlated with the outcomes of in-
terest. At this point, we do not define the circumstances that lead
to bias precisely, this will be done at the end of this section. Besides
loss of precision and introduction of bias, deletion of cases may also
lower the power of statistical tests and, finally, sometimes the data
are too costly to discard. Therefore, most literature discourages this
practice
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The second way to deal with missing data is the practice of impu-
tation, that is, filling in the missing data with the use of imputation
techniques. Examples are mean imputation, regression imputation,
hot-deck imputation & multiple imputation (Little & Rubin, 1987).
The third way to deal with missing data, is to ignore the missing data
and estimate the model using all available observed data. The prob-
lem is that the software used must be able to handle the more com-
plicated computations involved. Further, in some situations, which
will be discussed below, this approach still leads to biased estimates.

The fourth way to deal with missing data is by explicitly modeling
the mechanism that caused the missing data and incorporated this
additional model into the model for the observed data. In this thesis
we focus on the third and fourth methods for handling missing data
in the framework of IRT models.

Above, we used the vague notion of systematic missing data and
posited that this form of missingness might lead to bias in estimates.
However, a precise analysis of when this actually happens is quite
subtle. The problem has been analyzed by Rubin (1976). He dis-
cussed the weakest conditions on the process that caused the missing
data such that it is always appropriate to ignore this process when
making statistical inferences about the distribution of the data of
interest. To define this ignorability principle, suppose 6 and { are
the parameters of the observed data and the missing data process,
respectively. Further, suppose D is the missing data indicator. In the
framework of this thesis, D will be a matrix with elements d;;, = 1 if
for persons ¢ and items k a realization x;; was observed and d;; = 0
if ;. was missing. Then, the missing data is said to be missing at
random (MAR) if the probability of D given the observed data z(y),
missing data z(g), the parameter ¢ and, possibly, observed covariates
y does not depend on the missing data z(q), that is,

P(D|$(0),$(1),C,y) = P(D|:L‘(1)7<7y)

Furthermore, in a likelihood-based framework, the parameters ¢ and
0 should be distinct, that is, the joint space of (¢, ) should factorize
into a (¢) and (@) space. If the missing data are MAR and distinctness
holds, then the missing data is said to be ignorable. So in likelihood
based inferences, if the missing data are MAR then the missing data
mechanism or process is ignorable. This means that we do not take
into account ¢ in the analysis and still the resulting estimates of our



6 1. Introduction

parameters are consistent. In the Bayesian framework, the missing
data mechanism is said to be ignorable if the missing data are MAR
and the priors of ¢ and # are independent.

In educational measurement, it often happens that item nonre-
sponses are nonignorable missing data. An example, for instance, is
a test with a time limit condition, where examinees of lower ability
do not reach the items at the end. Thus, the pattern of missingness
in this case depends on the ability that is measured and hence the
missing data are not generally ignorable.

1.3 Objectives and Outline of the Thesis

The topic of this thesis is IRT modeling in the presence of nonignor-
able missing item responses. The main theme of this thesis is that,
apart from the observed item responses, also the variable d;; can be
modeled by IRT.

The first part of this thesis (Chapters 2 & 3) will examine the
effect in the bias of the model parameter estimates when IRT model
for the nonignorable missing data is introduced in the estimation.
The purpose of the inclusion of an IRT model for the mechanism
that governs the missing data is to reduce the bias in the parameter
estimates of the model parameters in the case of violation of Ru-
bin’s ignorability principle. Further, the reduction in bias will also
be studied when the IRT model for missing data includes observed
covariates. The combined model for the observed item responses and
the missing data indicator is a multidimensional IRT model with two
dimensions for the persons parameters: one for the observed data
and one for the missing data. They are assumed to be correlated.
The model parameters are estimated using the marginal maximum
likelihood method (MML).

In Chapter 2, we investigate through a simulation study for both
the dichotomous and polytomous case the effect in the bias of the
parameters estimates. Further, the difference in precision of the pa-
rameters is investigated between including an IRT model for the
missing data process with and without observed covariates.

In Chapter 3, an approach analogous to the approach of Chapter 2
is applied to data from a test with a time limit (a speeded test). The
missing data indicator will be modeled using the so-called sequential
or steps model (Tutz, 1990; Verhelst, Glas and de Vries, 1997). Also
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here the model parameters are estimated using MML. Simulation
studies are conducted to test the method, first ignoring the missing
data process and second including the step model for the missing
data.

In Chapter 4, two methods for deciding whether the missing data
are ignorable or nonignorable in the IRT framework are proposed
that are based on the splitter item technique (Van den Wollenberg,
1979; Molenaar, 1983 ). It is tested whether the item parameter
estimates differ across subsets of item response data. In the first
method, the observed data are split-up according to the values of
the splitter item. Then, the estimated marginal distributions of the
item parameters corresponding to both data sets are compared for
detecting differences. In the second method, an IRT model for the
observed data is extended with group specific item parameters. These
extra parameters, known as Bayesian modification indices (Fox &
Glas, 2005) provide information regarding item parameter differences
across groups. They are estimated using MCMC, but these estimates
do not interfere with the estimation of the other model parameters.
Simulation studies were undertaken to illustrate the methods.

In Chapter 5, we develop a fixed effect IRT model for modeling
group specific item parameters. The idea is to extend the class of
binary IRT models with fixed effects. We propose a general MCMC
method to simultaneously estimate all model parameters. The pro-
posed model is used in two practical applications. First, to detect
whether a response mechanism is ignorable or not using the splitter
item technique and second to detect differential item functioning.
Simulation studies are presented to show how the proposed model
can be applied.
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2

IRT Models for Nonignorable Missing
Data Processes

ABSTRACT: Missing data usually present special problems for
statistical analyses, especially when the data are not missing at
random, that is, when the ignorability principle defined by Rubin
(1976) does not hold. This chapter presents a model-based pro-
cedure that handles non-ignorable missing data using item re-
sponse theory (IRT'). The relevant model for the observed data is
estimated concurrently with the IRT model for the missing data
process. As an example, the generalized partial credit model is
used to model the observed data while the Rasch model is used
to model the missing data process. Simulation studies for di-
chotomous and polytomous data are presented that show that
the bias in the item parameter estimates obtained ignoring the
missing data process can be removed or reduced by using the
explicit model for the missing data process. It is shown that the
IRT model for missing data can also include observed covariates.
Using a simulation study, it is shown that the bias in the pa-
rameters can be greatly reduced when observed covariates were
included in the estimation.

KEYWORDS: item response theory, latent traits, missing data,
non-ignorable missing data, observed covariates

2.1 Introduction

In research, missing data is always a source of concern for people
who are doing statistical analyses. It raises the level of complex-
ity of making statistical inference. Many researchers, methodologist,
and software developers resort to editing the data, although ad hoc
edits may do more harm than good by producing results that are
substantially biased, inefficient and unreliable (Schafer & Graham,
2002). One way to alleviate the bias in the item parameter esti-
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mates is the identification of the variables that explain the cause of
missing data. These explanatory variables are called ”mechanism or
process” variables. By including a model for this missing data mech-
anism in the estimation we can reduce or eliminate the bias (due
to missingness) in our parameter estimates. Theoretically, if all the
process variables associated with a particular piece of missing data
can be identified and modeled accurately as controls, the impact of
the missing data can be statistically adjusted to the point where it is
ignorable (Little & Rubin, 1987). In practice, it is difficult to identify
these process variables for all cases of missing data. However, if the
given data set contains missing observations, the mechanism causing
this missingness can be characterized by its variety of randomness
(Rubin, 1976) as missing at random (MAR) and missing completely
at random (MCAR).

Suppose 6 and ( are the parameters of the observed data and
the missing data process, respectively, and D is the missing data
indicator with elements d;; = 1 if a realization x;; was observed and
d;;, = 0 if ;. was missing for persons ¢ and items k. Following Rubin’s
definition, missing data is said to be MAR if the probability of D
given the observed data x5, missing data x,,;s, some parameter
¢ and observed covariates y does not depend on the missing data
Tmis that is, if

P(D|xobsaxmis>C7y) = P(D|xob87Cay)‘

Furthermore, the parameters ¢ and 6 are distinct if there are no
functional dependencies, that is, restrictions on the parameter space
(frequentist version) or if the prior distributions of ¢ and 6 are in-
dependent (Bayesian case). If these two components (MAR and dis-
tinctness) are satisfied then the missing data is said to be ignorable,
otherwise the missing data are nonignorable. If MAR and distinct-
ness hold, the missing data process is ignorable for statistical in-
ferences, which means that we do not have take into account the
distribution of D and (, yet the consistency of the estimates is not
threatened by the occurrence of the missing data.

In the framework of IRT, missing data can be split into four types
(Lord, 1974). The first consists of missing observations which result
from a priori fixed incomplete test and calibration designs. The sec-
ond consists of classes of response-contingent designs such as two
and multistage testing (Lord, 1980) designs and computerized adap-
tive testing. These designs produce ignorable missing data, because
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the design variables D are completely determined by the observed
responses. The third type is ignorable missing data that results from
unscalable responses such as “do not know” or “not applicable”, or
items missing from booklets. The fourth and last type of missing
data results from a nonignorable missing data mechanism. These
will, for instance, occur when low-ability respondents fail to produce
a response or responses as a result of discomfort or embarrassment.
Bradlow and Thomas (1998) mentioned that ignoring this type of
missing data process could produce bias in the parameter estimates.

Statistical inference based on the observed data when the missing
data process is not ignorable in most cases leads to biased estimates
of the parameters of the model. Some literature suggested remedies.
One helpful proposal is to model the process that caused the missing
data (Heckman, 1979), and the applications discussed below all fall
in this category.

Copas and Farewell (1998) argued that nonignorable nonresponse
can be explained by covariates such as a subjective measure of en-
thusiasm to respond. For example, it is expected that when an issue
under study is sensitive, an individual may be embarrassed to give a
response. In the same manner, students with a low proficiency may
fail to respond to difficult items. In the framework of a medical sur-
vey, Holman and Glas (2005) report that patients with a relatively
high functional status may boost the estimate of their level by failing
to respond to items of a physical disability scale.

Moustaki (1996, see also Bartholomew & Knott, 1999) developed
a general latent trait and latent class model for mixed observed vari-
ables. Within this framework, three methods for dealing with nonig-
norable missing data were proposed (O’Muircheartaigh & Moustaki,
1999; Moustaki & O’Muircheartaigh, 2000; Moustaki & Knott, 2000).
In the first method for the treatment of nonresponse, the missing
value is treated as a separate response category. The method in-
cludes the missing values in the analysis of the observed items to
obtain information about the missing values based on what has been
observed, i.e. they used the interrelationships among the items. This
information is related to the attitude dimension or dimensions in
which they can connect attitude with the nonresponse.

The second method to deal nonresponse is computing response
propensities. The idea is to use the propensity score to weight item
responses and respondents to account for item and unit nonresponse
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and to obtain adjusted estimates. This response propensity method
uses a logistic or probit regression which is fitted to a binary item
response-nonresponse variable for the survey item of interest with a
set of covariates.

The third method is to use a latent variable model with two la-
tent dimensions, one to summarize the response propensity and the
other to summarize the individual position on the dimension of in-
terest (such as ability or attitude). As an example, O’Muircheartaigh
and Moustaki (1999) used a latent variable model for the treatment
of item nonresponse in attitude scales. They combined the idea of la-
tent variable identification with the issues of nonresponse adjustment
to surveys. This latent variable approach allows missing values to be
included in the analysis and equally important allowed information
about attitude to be inferred from nonresponse. Their method han-
dled binary (dichotomous), metric and mixed (binary and metric)
manifest items with missing values.

Working within the latter approach, Holman and Glas (2005) pro-
posed an IRT model that allows concurrent estimation of IRT item
parameters for both a model for the observed dichotomous responses
and the missing data indicators. In this chapter we extend this ap-
proach to polytomous item responses. Further, we generalize the
model to include covariates for the item responses and the miss-
ing data indicators. Using a simulation study, we will investigate to
what extent the bias in the parameters of the observed data model
can be reduced if the observed covariates are included. Both meth-
ods (the method with and without covariates) will be applied in both
dichotomous and polytomous cases in order to assess the feasibility
of the method.

This chapter consists of four sections and is organized in the fol-
lowing manner. After this introduction, the general IRT model for
both the observed data and missing data are presented. The follow-
ing section describes the MML estimation procedure. Finally, the last
section presents the simulation studies that will apply the proposed
method.
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2.2 IRT Models

2.2.1 General IRT model for missing data

Let X be a two-dimensional data matrix with elements x;;, where
persons are indexed as ¢ = 1,..., N and items are indexed as k =
1,..., K. If a combination of ¢ and k& has been observed, then the
entry x;; is the observation, otherwise it is equal to some arbitrary
constant. We define a design matrix D of the same dimension as X
with elements d;;, = 1 if x;; was observed, otherwise d;;. = 0

Using the elements of X and D, one of our objectives is to make in-
ferences on the individual person parameter 6;, which are potentially
influenced by a latent person variable { representing the missing data
process.

To model the missing data process, we use a Q-dimensional IRT
model proposed by Reckase (1985, 1997) and Ackerman (1996a &
1996b). This model, which is in logistic form, has the probability of
an observation given by

exp(2 VrgCig — Ok0)
1+ exp(ZqQ VeqGiq — ko)

where vy, and 0o are the item parameters (discrimination and dif-
ficulty) of the missing data indicator, which we will also refer to as
the missing data process.

The model (2.1) is the Rasch model (Rasch, 1960) for dichotomous
items when @) = 1, and 7, = 1 and the two parameter logistic (2PL)
model (Lord & Novick, 1968) when @ = 1.

When the amount of missing data is small, the appropriate model
must have few parameters (like the Rasch model) to be estimable
(Lord, 1983).

Another approach of modeling the missing data process is us-
ing a normal-ogive representation (McDonald, 1967 & 1997; Lord
& Novick, 1968) which is comparable to the logistic approached we
used above but we will not discuss it in this chapter.

p(di, = 1]Giy Yk, Ok) = (2.1)

2.2.2  Combined IRT models for missing data and observed
data

o Combined IRT models of missing data and observed data with-
out observed covariates
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Suppose 8 and ( are the person’s latent variables related to the ob-
served data and missing data and let g(0) and g( ¢) be their densities.
Let p(zik|dik, 0;,0, Bi) be the measurement model for the observed
data. It is the probability of the response (observed) variable condi-
tioned on the latent variable of the observed data, the design variable
(missing data indicator) and item parameters. Let p(d;x| i, Yk, Ok)
be the measurement model for the missing data indicator. It is the
probability of the design variable conditioned on the latent variable
and item parameters for missing data process. The general models
we are using in our estimation procedure are the models described in
Holman and Glas (2005). The first model which, we call the M AR

model, is given in likelihood form as

[ p(ir|dir, 0. cve, Br)p(dik|Gis Y 61) 9(6:)9(C).- (2.2)
ik
It is the model that ignores the missing data process, and we ignore
the model for the missing data process p(d;x| i, Vk,0k)g(6;) in the
estimation process. The latent variables for the observed data and
the missing data process are not related in the M AR model.

The second model, which we call the NONM AR model, is the
model where missing data process is included in the estimation process.
In this model, the latent variables for both the observed and missing
data process # and ( are correlated by X. This model is written in
likelihood form as

[ p(@ikldix: ;.0 Br)p(dir|Gi i 0) (G 03] E),  (2.3)
ik
where g(-) is the density of (; and 6;. It is assumed to follow a
Multivariate Normal distribution with mean vector 0 and variance-
covariance Y. Expressions (2.2) and (2.3) will be used in our proce-
dure to make inferences on the estimation of the model parameters.
In a Bayesian framework, g({;, 6;|X) can be seen as a prior for the
latent variables. Therefore, statistical inferences under the ignorabil-
ity assumption are not justified, because the priors of the parameters
modeling the observations and the missing data process are not in-
dependent. So both Bayesian estimation based on the full posterior
and Bayes modal estimation integrating out part of the parameters
are not appropriate.
In a frequentist framework, the argument that ignorability does
not apply is more subtle. The fact that the two latent variables 6



2.2 IRT Models 15

and ( are correlated as such does not imply a functional dependence.
Béguin and Glas (2001) and Holman and Glas (2005) give conditions
for identification of the model. From their conclusions it follows that
the basis of the two-dimensional latent space can always be trans-
formed in such a way that both the model for the observations and
the model for the missing data indicators depend on the same two
latent variables. Therefore, the latent parameters of the two models
are not distinct. In other words, within the framework of the model
they are functionally dependent.

o Combined IRT models for missing data and observed data with
observed covariates

The IRT model for missing data can also include observed covari-
ates y. We present a model in likelihood form as

11 p(@irldix, 05,0, Br)p(diklGis v, 01) 9 (Gir 63151, ), (2.4)
ik

where its components are similar to (2.3), but with an addition of
regression coefficients 7. The latent variable for the missing data is
expressed as a linear combination of the observed covariates that is,

p
Gi=> MsYis +&i (2.5)

s=0
where we assume y;0 = 1 and ¢; is the random error which fol-

lows a multivariate normal distribution with mean 0 and variance-
covariance ..

So in (2.5) we want to model the components ¢ of the missing data
process through the observed covariates y with the same assumption
that latent variables ¢ and 6 are correlated.

2.2.8 The Generalized Partial Credit Model (GPCM)

For the observed responses, we consider items with dichotomous and
polytomous responses and they will be analyzed in general using the
multidimensional generalized partial credit model (GPCM; Muraki,
1992). For persons i (i = 1, ..., N) responding to item k (k = 1, ..., K)
in category g (¢ = 0,...,mg). The probability of responding in a
category g of item k by person i is given by
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VYrg(0:) = p(Xirg = 110;, o, Br) =
exp(g ZqQ akqeiq - Bkg)
1+ Z;ankl exp(h EqQ O‘kqeiq - Bkh)

where aj and (i are the item vectors of discrimination and diffi-
culty parameters. where oy, = {1, ...0g, ..ok } is a Q-dimensional
vector of discrimination parameters, 6; = {0;1, ..., 0iq, ..., 0iq } is a Q-
dimensional vector of person’s parameters and (i, is a scalar item
parameter for difficulty. We assume Syg = 0 so that estimates of 34
are unique

Model (2.6) will be a specific model depending on the values of
some of its parameters. When mj = 1, (2.6) is the multidimen-
sional two-parameter logistic model (2PL; Birnbaum, 1968) and in
addition becomes the multidimensional partial credit model (PCM;
Masters,1982; Masters & Wright, 1997) when item discrimination
ap = 1 and further it is the multidimensional Rasch model for di-
chotomous items when mj; = 1.

(2.6)

2.3 MML Estimation

2.8.1 FEstimation method

Suppose x; is the response pattern of respondent ¢, and X is the
data matrix. Under the MML approach, it is assumed that possibly
multidimensional ability parameters 6; are independent and iden-
tically distributed with density g(0;A). Usually, it is assumed the
person’s ability is normally distributed with population parameters
A (which are the mean p and variance o2 for the unidimensional case,
or the mean vector p and the covariance matrix 3 for the multidi-
mensional case). Item parameters ¢ consist of discrimination para-
meters (ay, or aqy for the unidimensional and the multidimensional
cases, respectively) and the item difficulties 5, whose elements are
(Bk1s Br2s - Brgs -+ Bkmy )- MML estimation derives its name from
maximizing the log-likelihood that is marginalized with respect to 6,
rather than maximizing the joint log-likelihood of all person parame-
ters # and item parameters ¢. Below we will give a general derivation
of MML estimation, and therefore the person parameters 6 are as-
sumed to include the parameters of the missing data indicator ¢, and
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likewise ¢ includes v and §. Let v be a vector of all item and popu-
lation parameters that is v'= ((bt, A"). Then the marginal likelihood
of v is given by

N
L(oX,D) = [ [ [ plxicdil6r,o)o0i Nt

N
piX,D) =] [ [ ol diltic 0)g(6:, )5,

and hence the marginal log-likelihood of v is

N
log (v X, D) = log [ [ . [ plx. cil6 6)9(6:, Ao

which is equivalent to the expression

N
log L(v: X, D) = Y 1og [ . [ p6xi cilfs 0)g(61, Nasi. (27)

The reason for maximizing the marginal rather than the joint likeli-
hood is that maximizing the latter does not generally lead to consis-
tent estimates. This is related to the fact that the number of person
parameters grows proportional with the number of observations, and,
in general, this leads to inconsistency (Neyman & Scott, 1948). Re-
sults from simulation studies by Wright and Panchapakesan (1969)
and Fischer and Scheiblechner (1970) showed that these inconsisten-
cies can indeed occur in IRT models. Kiefer and Wolfowitz (1956)
have shown that MML estimates of structural parameters, say the
item and population parameters of an IRT model, are consistent
under fairly reasonable regularity conditions, which motivates the
general use of MML in IRT models.

Now, the marginal likelihood equations for v can then be easily
derived using Fisher’s identity (Efron, 1977; Louis 1982; also see,
Glas, 1992, 1998). The first order derivatives with respect to v can
be written as

N
h(v) = a% log L(v|X,D) = ZE(wi(U)\Xi,di,U) (2.8)

where w;(v) is
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wi(v) = 9 log p(x;, 0;|d;, v)

ov
0
= 3 [log p(x;|0;, di, ) + log g(6;]\)] (2.9)
with
my
p(xil0i, di, ¢) = [ T wrg(6:) 440 (2.10)

k g=0

and the expectation is with respect to the posterior distribution
p(0i|xi, di,v). The identity in (2.8) is closely related to the EM-
algorithm (Dempster, Laird and Rubin, 1977), which is an algorithm
for finding the maximum of a likelihood marginalized over unob-
served data. The present application fits this framework when the
response patterns are viewed as observed data and the ability pa-
rameters as unobserved data. Together they are referred to as the
complete data. The EM algorithm is applicable in situations where
direct inference based on the marginal likelihood is complicated, and
the complete data likelihood equations, i.e., equations based on w;(v)
are easily solved. Given some estimate of v as v*, the estimate can
be improved by solving Zf\] E(wi(v)|xi,d;,v*) = 0 with respect to
v. Then this new estimate becomes v* and the process is iterated
until convergence.

Application of this framework to deriving the likelihood equations
of the structural parameters of the multidimensional GPCM pro-
ceeds as follows. The likelihood equations are obtained upon equat-
ing (2.8) to zero, so explicit expressions are needed for (2.9). Given
the design vector d;, the ability parameter 6; and the item para-
meters of the multidimensional GPCM, the probability of response
pattern x; is given by (2.10). By taking first order derivatives of the
logarithm of this expression, the expressions for (2.9) are found as

wi(gg) =dik, [0iq(Tikg—Vikg)] (2.11)
and
wi(ﬁkg) :dik(wikg_xikg) (2.12)

where g, =141(0;), thus the likelihood equations for the item pa-
rameters are found upon inserting these expressions into (2.8) and
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equate the resulting expressions to zero, hence

N N
> EOigingdinlxi, d;,0) = E(digbiginglx;, d;, v)

(]

simplifying further

N N
Z E(eiqwikgdik‘xi, di? ’U) = Z dikxikgE(giq‘xi, di? ’U) (2.13)

and similarly
N N
Z E(daging|x;,d;,v) = Z E(diwirglx;,d;, v)
then
N N
> E(dintinglx;, diyv) = digikg (2.14)

To derive the likelihood equations for the population parameters, the
first order derivatives of the logarithm of the density of the ability
parameters g(6|\), where X is the vector of population parameters
which is the mean vector p and the covariance matrix 3 are needed.
In the present case, g(f|u,X) is the well-known expression for the
g-dimensional multivariate normal distribution with mean vector p
and the covariance matrix 3, whose probability density is

9(0:i10) = g(0:, ) = (2m) " |27 exp (=1/2(0 — )" S7(0 — )

where |X| is the determinant of the covariance matrix, so it is easily
verified that these derivatives are given by

wili) = 1/2(571(0 — ) (2.15)

and
wi(D) = 1/20(0 — ) (9 — ) B2 = £ (2.16)

where elements considered in 3 are the diagonals.
The likelihood equations to obtain u are again found upon insert-
ing these expressions in (2.8) and equating the resulting expressions

to zero, that is
N

> B0 - p)|xi, A) = 0.

%
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and by simplifying the expression by working on the expectations of
the stochastic variable 6 and the parameters we solve u as

SV E(0)x;, )
- N

Similarly for 33, the resulting expression is

ZE (60— p) (0 — p)'s72N) = ZE
ZE((G — )0 - pw)'=72N) = N(=T (2.17)

simplifying leads to

R ((CEDICEIDREIPY
- .

Note that the standard errors are also easily derived in this frame-
work: Mislevy (1986) points out that the information matrix can be
approximated as

ZE wi(v) | xi,dg, v ) E(wi(v) | x5,ds,0)t (2.18)

and the standard errors are the diagonal elements of the inverse of
this matrix.

The basic approach presented so far can be generalized in two
ways. First, the assumption that all respondents are drawn from
one population can be replaced by the assumption that there are
multiple populations of respondents. Usually, it is assumed that each
population has a normal ability distribution indexed by a unique
mean and variance parameter. Bock and Zimowski (1997) pointed
out that this generalization together with the possibility of analyzing
incomplete item-administration designs provides a unified approach
to such problems as differential item functioning, item parameter
drift, non-equivalent groups equating, vertical equating and matrix-
sampled educational assessment. Item calibration for CAT also fits
within this framework.
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2.8.2 Observed Covariates

We will now derive the MML estimation equations for the regression
parameters for a model with observed covariates, such as given in
(2.5). The population model is now given by

9(bily;, B, X) = (2m)" 2 |2 V2 exp (-1/2(6; — B'y;)'=71(6; — B'y,))

where B is a p x ¢ matrix of regression parameter coefficients and 32
is a ¢ X ¢ variance-covariance matrix. Equivalently the general model
of the latent variables can be expressed as a linear combination of
the observed covariates with parameters regression coefficients and
parameter residuals in the matrix form

§=YB+E (2.19)

where 0 is the n X ¢ matrix of latent variables,Y is a n X p matrix
of observed covariates, and E is the n x ¢ matrix of residuals. In
general, if we let p x ¢ matrix B be the of estimate of B. Then the
maximum likelihood estimate of B is given by

B = (YY) lY'. (2.20)

Furthermore, application of Fisher’s identity leads to the expression
of a vector of the first order partial derivative with respect to B,
that is

h(B) = —lnL (B|X,D) / / Y)Y 0)p(0)X)do
=B - / /Ytep 0|X)do
=B - (YtY) E(0)X)]. (2.21)

Now, simplifying the expectation of the 6 given the data, we have
h(B) = (YY)t Z YIE(0,|x;)] (2.22)
Setting h(B) = 0, we can calculate B as

Z tB0,]x,)] (2.23)
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We can solve the estimate of the variance-covariance of the residuals
. as

N
=52 | (0-By) (0-By) g0l B E)d. (220

2.4 Simulation procedure

A simulation study was undertaken to asses the effect of a missing
data process as described in (2.3) and (2.4) on the estimates of item
parameters. The simulation study consisted of two parts. The first
part extends the study by Holman and Glas (2005) to a situation
where the model for the missing data indicators is multidimensional,
and studies the effects of including no, part of, or all latent dimen-
sions of this model in the estimation. The second simulation study
pertains to the effects of adding observed covariates to the model.

2.4.1 Data generation and parameter estimation

To study the effects of including no, part of, or all latent dimen-
sions of the model for the missing data process in the estimation
procedure, latent person parameters were drawn from three-variate
normal distribution. The sample size was N = 500 persons. The
variances of the latent variables was always equal to one. The cor-
relation between the latent trait variables §; and (;, p(6, (), varied
as 0.0,0.4 and 0.8. Also the correlations between the two dimensions
of the missing data process p((1, (2), varied as 0.0,0.4 and 0.8. The
items were either dichotomously and polytomously scored. The test
consisted of K = 10 items. The values d;;, and x;; were drawn from
p(dik| G, Vs Ox) and p(xix|dik, 05, o, Br), respectively. The data were
used to compute MML estimates of the item parameters under vari-
ous assumptions. Then the values of item parameters estimates over
replications 7 (r = 1,..., R, R = 100), say ¢, were compared with
the values of the parameters used to generate the data using the
mean absolute error (MAE) and mean squared error (MSE). There
is no index k because all item parameters were equal. The formula
to obtained MAE for item parameters is given by

1 R
MAE(9) = 5>

r=1

o — 9| (2.25)
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where R denote the number of replications of the simulation proce-
dure and f3; is the estimate of the item parameter 8. On the other
hand to obtained the MSE for Sg,it is given by

1A~ N2
MSE(@9) =23 (6, —9) - (2.26)

r=1

For the dichotomous case in the simulation, two conditions were used:
in the first, the item parameters for all k were o, = 1,7y, = 1,0, = —1
and 3 = 0, these initial entries give us about 25% missing data and,
in the second, we considered o, = 1,y = 1, 6 = 0 and S = 0 which
results to about 50% missing data. The MAE and MSE results of the
item parameters estimates for the combination K = 10 and N = 500
are given in Table 2.1 and Table 2.2.

For the polytomous case, items with three response categories were
used in the simulation. The item parameters for all k were ap =
1L,ve = 1,0 = —1 and By = —1,1, and ap = 1, = 1,0 = 0
and B = —1,1. The MAE and MSE results of the item parameters
estimates for the combination K = 10, N = 500 are given in Tables
2.3 and 2.4.
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TABLE 2.1. MAE of item parameter estimates under MAR and NON-
MAR models(dichotomous Case); Estimation Model: (Observed data: 2PL,
missing data: 1PL); Dimension of missing data process=2; N=500; K=10;
a=18=01v=1p = p#,0); p2 = p(¢i, &)

Mean Absolute Error
0 p1 p2 DMis | « B 0 y
-1 .0 - - 168 .102
4 .0 0 169 .118
1 163 113 126 .467
2 163 113 .106  .162
4 0 169  .107
1 164 102 .109  .205
2 165 .102  .108  .149
.8 0 170 1110
1 165 104 .100 .137
2 165 .104 .104 .140
8 4 0 176 .140
1 156 .105 .101 .151
2 160 .104 .099 .135
.8 0 170 137
1 153,103 .099 .136
2 156 .103 .103 .137
0o .0 - - 225 120
4 .0 0 245  .148
1 228 133 .081 .568
2 223 128 .089 .154
4 0 229 142
1 209 124 .079 .194
2 209 .125 .084 .147
.8 0 222 144
1 214 121 .086 .126
2 214 122 .088 .126
8 4 0 257 210
1 187 128 .078 .158
2 186 129 083 .136
.8 0 245 220
1 192 133 .083 121
2 194 133 .083 .121
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TABLE 2.2. MSE of item parameter estimates under MAR and NON-
MAR model (dichotomous Case); Estimation Model: (Observed data: 2PL,
missing data: 1PL); Dimension of missing data process=2; N=500; K=10;

a=1,8=0,v=1; p1 = p(6,¢); p2 = p((1, ().

Mean Squared Error

0 p1 p2 DMis| « Jé] 0 0
-1 .0 - - .046 .016
4 .0 0 046 .021
1 043 .020 .023 .312
2 043 .020 .018 .043
A4 0 047 .018
1 044 .016 .019 .065
2 .044 016 .019 .039
8 0 047 .019
1 .044 .017 .016 .031
2 .044 .017 .017 .032
8 4 0 051 .029
1 039 .017 .016 .035
2 042 .017 .016 .030
8 0 047 .028
1 038 .017 .015 .029
2 .040 .017 .017 .030
0o .0 - - 089 .023
4 .0 0 110 .034
1 088 .028 .010 .423
2 085 .026 .013 .040
A4 0 .088 .031
1 072 .024 .010 .062
2 072 .024 .012 .036
8 0 .087 .032
1 077 .023 .012 .025
2 076 .023 .013 .027
8 4 0 023 .062
1 056 .026 .010 .038
2 .056 .026 .011 .029
.8 0 104 .067
1 062 .028 .011 .023
2 064 .028 .012 .024
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TABLE 2.3. MAE of item parameter estimates under MAR and NON-
MAR model (Polytomous Case); Estimation Model: (Observed data: PCM,
missing data: 1PL); Dimension of missing data process=2; N=500; K=10;
a=1=-117v=1; pr = p(0,Q); p2 = p(¢1, &)

Mean Absolute Error
0 p1 p2 DMis| « sl p2 0 0
-1 .0 - - 137 135 194
4 0 0 142 129 194
1 139 1260 192 127 470
2 138 125 193 .103  .167
4 0 138 139 .198
1 136 129 194 .109  .192
2 35 129 194 107 .162
.8 0 136 137 .206
1 133 126 .193  .098  .138
2 132 127 192 .100 .139
8 4 0 152 153 .247
1 140 129 200 .100 .154
2 38 126 .200 .103  .138
.8 0 138 150 .241
1 129 125 196 .098 .130
2 128 125 197 .102  .130
o .0 - - 187 156 .239
4 0 0 A82 173 .259
1 175 148 250 .080 .548
2 A74 0 145 242 .088 .155
4 0 189 173 257
1 182 150  .241  .078 .182
2 182 150 243 .084 .143
.8 0 188 182 274
1 183 .151 .246 .087 .131
2 183 1561 246 .090 .129
8 A4 0 197 228 .367
1 165 148 245 .081 .152
2 167 143 247 .086 .137
.8 0 195 241 411
1 170 154 .250 .088 .120
2 A71 153 249 .090 .123
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TABLE 2.4. MSE of item parameter estimates under MAR and NON-
MAR model (Polytomous Case); Estimation Model: (Observed data: PCM,
missing data: 1PL); Dimension of missing data process=2; N=500; K=10;

a=1;=-11y=1; p1 = p(0,¢); p2 = p(C1,2)-

Mean Squared Error

0 p1 p2 DMis | « 51 B2 4] ~y
-1 .0 - - 031 .029 .062
4.0 0 033 .027 .058
1 .031 .025 .059 .023 .322
2 .031 .024 .061 .016 .046
A4 0 031 .032 .061
1 .030 .027 .060 .018 .058
2 .030 .027 .060 .019 .044
.8 0 .030 .031 .065
1 029 .025 .059 .015 .030
2 029 .025 .059 .016 .032
8 4 0 .037 .037 .090
1 029 .026 .064 .015 .036
2 .030 .024 .063 .017 .030
.8 0 .031 .037 .087
1 026 .025 .061 .016 .027
2 026 .025 .061 .017 .026
0 .0 - - 062 .039 .091
4 .0 0 .057 .047 .101
1 .053 .035 .100 .010 .418
2 052 .033 .095 .012 .039
A4 0 .062 .049 .100
1 .057 .036 .097 .010 .054
2 .057 .036 .098 .011 .035
.8 0 .060 .055 .115
1 057 .038 .098 .012 .028
2 .056 .038 .098 .012 .027
8 4 0 .064 .079 .187
1 .041 .035 .092 .010 .034
2 .043 .033 .095 .012 .030
.8 0 .064 .088 .225
1 .046 .037 .101 .012 .023
2 .047 .036 .101 .013 .024
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All four tables have the same format. In all tables, § refers to the
difficulty parameter for the missing data process used in generat-
ing data. Consider Table 2.1. The first row pertains to a base-line
condition where p(6,¢) = 0.0. So ignorability holds, and there are
25% missing data. The values of the MAE(«) and MAE(3) given
in the two columns labeled a and (; they are the mean absolute
errors over the 100 replications, and they serve as a baseline. The
next three rows pertain to data generated using p(6,¢) = 0.4 and
p(C1,¢2) = 0.0. These data were analyzed using no, one and two di-
mensions for the missing data indicator. The column DMis refers to
the number of dimension of the latent variable for the missing data
process. The columns denoted by «, 5, § and v are the estimated
values of the mean absolute errors of the item parameters for the
observed data « (discrimination), 8 (difficulty) and the missing data
process ¢ (difficulty), v (discrimination). For polytomous case, re-
ported in the Table 2.3 there are two columns for the mean absolute
error of the location parameters referred as 81 and B2. The analogous
mean squared errors are given in Table 2.2 and Table 2.4.

The simulations (please refer to Table 2.1 until Table 2.4) showed
that both MAE and MSE values of the item parameters in the pa-
rameter estimates were inflated when the model for missing data
process was excluded in the parameter estimation. The effect in-
creased as correlation between the latent variables for both observed
data and the missing data process increased. For instance if we con-
sider Table 2.1, when § = 0, (that is, when there are 50% missing
data) the baseline, which refers to M AR data, shows that MAE(«a) =
0.225 and MAE(S) = 0.120. When p(0, ¢) = 0.4 and p((1,(2) = 0.0,
and the missing data is ignored (DMis = 0), the MAE for o and
have values 0.245 and 0.148 respectively. So the first conclusion is
that ignoring the missing data process leads to inflated estimation
errors.

When the model for the missing data process was included in the
analysis, that is, when the NON M AR model was used, the MAE
values dropped to 0.228 for o and 0.133 for § when DMis=1 and
MAE(«a) = 0.223 and MAE(S) = 0.128, when DMis=2. In general,
a decrease in the values of the MAE and the MSE of the item pa-
rameters was observed and this decrease was positively related to
the number of dimensions included. Similar results are also observed
for the values of MAE and MSE of the item parameters § and v for
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missing data process. So the second conclusion is that invoking the
missing data process leads to a reduction of estimation errors, even
if it is not completely invoked.

The third conclusion that can be drawn from the tables is that
when the missing data process is completely modeled, the estimation
errors can even fall below the errors of the baseline. For instance, in
Table 2.1 we see that for 6 = 0.0, the MAE(«) = 0.225 for the base-
line and MAE(a) = 0.194 for p(0,¢) = p((1,¢2) = 0.8 and DMis =
2. Obviously, invoking a model for the missing data indicator results
in the exploitation of collateral information.

The fourth conclusion pertains to a main effect of the extent to
which MAR is violated. Inspection of the tables shows that if we
ignore the missing data process (DMis = 0), the magnitude of the
estimation error for p(,() = 0.8 is greater than the magnitude for
p(0,¢) = 0.4. For instance, in Table 2.1 we see that conditionally
on p(C1,¢2) = 0.4, the MAEs for « are .229 and .257, respectively.
Finally, if we consider all results, there is no clear effect of p((1,(2)

2.4.2 Data generation and parameter estimation with
observed covariates

The simulation procedure used was analogous to the simulation pro-
cedure in the previous section, but with added feature of including
observed covariates. To achieve comparability with the previous sec-
tion, the regression coefficients were chosen as follows. Let ¥y be
the covariance matrix of both the latent abilities for the observed
responses and the missing data indicator. As in the previous sec-
tion, there was one dimension for the observed responses and there
were two dimensions for the missing data process. Only the case
p(C1,¢2) = 0.8 was considered here. Further, either p(6, ¢) = 0.4 or
p(0, ¢) = 0.8. Let X, be the diagonal matrix of the variances of the
error terms. These variances were all equal to 0.15. The regression
coefficients B were chosen such that

Yy = BB'+X..

Note that the matrix B is now the Cholesky-decomposition of the
matrix g — Y., so the upper off-diagonal elements are equal to zero.
The latent variables were ordered in such a way that the regression
model for the latent variable for the observations only depended
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on the first covariate, and the two latent variables for the missing
data indicator depended on the first two and all three covariates,
respectively.

As before, the sample size was N = 500. Again the test length
was K = 10 and the item parameters were also as used above. One
hundred replications were made for every combination of §, p(6, ()
and DMis, where DMis is again the number of dimensions included
for the missing data process.

The results are given in the Tables 2.5, 2.6, 2.7 and 2.8. The for-
mat of the tables is analogous to the previous four tables, except
for an added column ncov, which refers to the number of covariates
that were included in the parameter estimation. Note that also the
baseline model where p(6,() = 0.0 (the MAR model) includes a co-
variate. This was done to enable the comparison with the NONMAR
models.
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TABLE 2.5. MAE of item parameter estimates under MAR and NONMAR
model (dichotomous Case); Estimation Model: (Observed data: 2PL, miss-
ing data: 1PL); variance=0.15; N=500; K=10; o = 1; 8 = 0; v = 1;
p1 = p(0,¢); p2 = p((1,C2)-

Mean Absolute Error

0 p1 p2 DMis ncov | « 15} ) 0%
-1 .0 - - 1 121 .095
4 8 0 1 A57 117

1 2 131 .097 102 .150

2 3 120 .097 .095 .104
8 .8 0 1 188 1142

1 2 159 110 .092  .127

2 3 126 .101  .089 .100
o .0 - - 1 JA45 117
4 .8 0 1 170 164

1 2 150 116 .083 .134

2 3 140 114 .078 .094
8 .8 0 1 313 .228

1 2 204 134 .092 .125

2 3 155 126 .084 .097
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TABLE 2.6. MSE of item parameter estimates under MAR and NONMAR
model (dichotomous Case); Estimation Model: (Observed data: 2PL, miss-
ing data: 1PL); variance=0.15; N=500; K=10; « = 1; 8 = 0; v = 1;
p1 = p(8,¢); p2 = p(C1, C2)-

Mean Squared Error

6 p1 p2 DMis NCOV | « B 0 v
-1 .0 - - 1 023 .014
4 8 0 1 042 .020

1 2 028 .015 .017 .036

2 3 022 .015 .015 .016
8 8 0 1 .059 .031

1 2 039 .019 .013 .024

2 3 024 .016 .012 .015
0o .0 - - 1 034 .022
4 8 0 1 .051  .040

1 2 038 .022 .011 .029

2 3 .031 .021 .010 .014
8 8 0 1 .190  .070

1 2 075 .028 .013 .025

2 3 037 .025 .011 .015
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TABLE 2.7. MAE of item parameter estimates under MAR and NONMAR
model (Polytomous Case); Estimation Model: (Observed data: PCM, miss-
ing data: 1PL); variance=0.15; N=500; K=10; « = 1; 8 = —1,1; v = 1;

p1=p(0,); p2 = p(C1,C2)-

Mean Absolute Error

0 p1 p2 DMis ncov | « gl B2 0 y
-1 .0 - - 1 109 118 175
4 8 0 1 139 133 212
1 2 15 0120 179 .099  .149
2 3 108 119 177 093 103
8 8 0 1 143 159 254
1 2 130 125 198 103 132
2 3 107 119 180 .096 .104
o .0 - - 1 126 146 217
4 8 0 1 166 .180 .309
1 2 138 143 211 .090 .143
2 3 128 0140 211 .084 .101
8 .8 0 1 191 241 417
1 2 159 148 238 .089 .126
2 3 JA27 0 .140 219 .084 .097
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TABLE 2.8. MSE of item parameter estimates under MAR and NONMAR
model (Polytomous Case); Estimation Model: (Observed data: PCM, miss-
ing data: 1PL); variance=0.15 ; N=500; K=10; a = 1; 8 = —1,1; v = 1;
p1=p(0,¢) ; p2 = p(C1, C2)-

Mean squared Error

6 p1 p2 DMis ncov | « 61 52 ) ¥
-1 .0 - - 1 .019 .022 .049
4 8 0 1 032 .028 .069

1 2 .021 .023 .050 .016 .036

2 3 .018 .022 .049 .014 .016
8 .8 0 1 .033 .039 .093

1 2 .026 .025 .060 .017 .027

2 3 .018 .022 .051 .014 .017
o .0 - - 1 .026 .034 .074
4 .8 0 1 045 .052 .135

1 2 .031 .033 .069 .013 .034

2 3 026 .031 .069 .011 .015
8 .8 0 1 .063 .089 .227

1 2 .041 .034 .093 .012 .025

2 3 .024 .031 .076 .011 .015
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Referring to Table 2.5, when we have § = 0, i.e., 50% miss-
ing data. The baseline showed entries for MAE(«) = 0.145 and
MAE(f) = 0.117 (as compared to the first simulation in Table 2.1,
MAE(a) = 0.225 and MAE(S) = 0.120). This increase in precision
is due to the inclusion of a covariate. When we increased the cor-
relation to p(0, ¢) = 0.4 and p( (1, (2) = 0.8, results showed that
when the missing data process was ignored and only the covariate for
0 was included in the estimation, the values MAE(«) = 0.170 and
MAE(B) = 0.164 were obtained. When one dimension for the missing
data process using the NON M AR model which include two covari-
ates were considered i.e., ncov = 2, results showed MAE(a) = 0.150
and MAE(S) = 0.116. Further, when two dimensions for the missing
data process in the NONM AR model were considered i.e., when
three covariates were included in the model for the missing data,
results obtained were MAE(«) = 0.140 and MAE(S) = 0.114

It can be seen that increasing the correlation of the latent vari-
ables 0 and ( that is increasing the violation of ignorability, resulted
in a more bias in the parameter estimates when the covariates are
ignored. Including them reduced the bias to a value close to the
baseline.
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Modeling Nonignorable Missing Data,
in Speeded Tests

ABSTRACT: If a test is administered under a limited-time con-
dition, items at the end of the test are often not endorsed. In
most instances, the pattern of missing responses depends on the
ability that is measured and, therefore, the missing data are not
ignorable in statistical inference. In the present paper, the data
are modeled using a combination of two item response theory
(IRT) models: one IRT model for the observed response data and
one IRT model for the missing data indicator. The missing data
indicator is modeled using the sequential model by Tutz (1990,
also see, Verhelst, Glas & de Vries, 1997). The two IRT mod-
els are connected by invoking the assumption that their latent
person parameters have a joint multivariate normal distribution.
The model parameters are estimated using marginal maximum
likelihood. Simulation studies showed that treating the missing
data as ignorable leads to considerable bias in the parameter es-
timates. Further, it was found that including an IRT model for
the missing data removes this bias in the parameter estimates.
The impact of the method in practical situations is illustrated
with data from the calibration of a time-limit test for measuring
intelligence.

KEYWORDS: ignorability, item response theory, marginal max-
imum likelihood, nonignorable missing data, sequential model,
step model

3.1 Introduction

Missing data can be organized into two categories: ignorable and
nonignorable missing data. If the missing data are missing at random
(MAR) and the parameter of interest and the parameters of the
missing data process are distinct, the missing data are ignorable.
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That is, with these assumptions, inferences based on the likelihood
function and likelihood ratios that ignore the missing data process
are valid and consistent (Rubin, 1976; Little & Rubin, 1987; Heitjan,
1994).

When the missing data are nonignorable, the likelihood function
and likelihood ratios that ignored the missing data process give
rise to biased item parameter estimates (Holman and Glas, 2005).
An appropriate method to deal with these problems is to model
the missing data process (Heckman, 1979). The idea is to identify
and model the explanatory variables in the missing data mecha-
nism or process that caused the missing data. Basing inferences con-
currently on this model and the relevant model for the observed
data, reduces bias caused by ignoring nonignorable missing data
(see for instance O’Muircheartaigh & Moustaki, 1999); Moustaki &
O’Muircheartaigh, 2000; Bartholomew & Knott, 1999; Moustaki &
Knott, 2000; Holman & Glas, 2005).

In this chapter, we are dealing with item nonresponses in tests
and examinations where responses are missing consecutively on items
at the end of the test, that is, the respondent has not reached the
end of the test because of a time limit. It must be expected that
the number of items endorsed is correlated with the respondent’s
ability level and therefore, the missingness is nonignorable. This form
of missingness is closely related to missingness caused by skipping
of items by respondents with a low ability. Holman & Glas (2005)
show that ignoring this missing data process can lead to bias in
the estimates of the item parameters. Bradlow and Thomas (1998)
also mentioned that ignoring this type of missing data process could
produce bias in the parameter estimates.

In this chapter, it is shown that the missing data indicator of a test
with a time limit can be modeled by the sequential model by Tutz
(1990), also known as the steps model (Verhelst, Glas, & De Vries,
1997). The observed responses will be modeled by the 2PL model,
but this choice is not essential. The step model for the missing data
indicator could be combined with any parametric IRT model.

This chapter is made up of six sections and is organized as follows.
After this section, a general notation is presented for IRT models for
the missing data process and the model for observed data will be
discussed. Then a presentation about the estimation procedure us-
ing the marginal maximum likelihood method follows. In the next
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section the results of a number of simulation studies will be pre-
sented. An application of the method using an intelligence test will
be undertaken in the fifth section. Finally, the last section gives a dis-
cussions of the results, and some conclusions and recommendations
for further research.

3.2 A General IRT Model

3.2.1 General IRT model for missing data

Let X be a two-dimensional data matrix with elements x;;, where
the persons are indexed ¢ = 1, ..., N and items k£ = 1, ..., K. When the
combination of ¢ and k is observed, the entry z;; is the observation,
otherwise it is equal to some arbitrary constant. We define a design
matrix D of the same dimension as X with elements

dor — 0 if z;; is missing
* =\ 1 if zy, is observed.

To model the responses missing as a result of the speededness of the
test, we will focus on the unobserved responses at the end of the
response pattern. So the focus will be on a string of missing data
indicators d; = 0, for k = &/, ..., K. Intermediate missing responses
will be considered ignorable missing data.

The table below presents a N x 2K data matrix , where N is the
total number of respondents and K is the total numbers of items. The
matrix contains the observed data X (with missing data indicated
by 9 as a dummy ) and the missing data indicator D.
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Observed data X Missing data indicator D
Persons 1 2 3 &k K 1 2 3 k£ . K
1 019 9 9 9 r 1 0 - - -
2 119 9 9 9 1 1 0 - -
3 101 9 9 9 111 0 - -

N 1 1 0 1 0 0 1 1 1 1 1 1

The item nonresponse occurred due to time limit condition and
interacts with the level ability of the respondent. In a case of di-
chotomously scored items, respondent ¢ answering to item k can get
a correct 1 or incorrect 0 response. Then he stumbled on an item
which has 0 entry in D and 9 in X,and the succeeding items are
skipped as well. To model the missing data process of this case, we
use the steps model (Verhelst, Glas, & De Vries;1997) given by

pldin =dip= ... =dip1=1& djy =0) =
Mm@ 0 - prn(@) f0O<k<E  (31)
and
pldin =dip = ... =djg—1 = dgg, = 1) =
iipe () i k=K, (3:2)

where we assumed that

N exp(yGi — Ok)
pr (G) = 1+ exp(1sCi — 0) (3.3)

So pg (¢;) is equivalent to the 2PL model for dichotomously scored
items. The model entails that the respondent makes item-steps until
the first wrong response, and then stops taking item-steps. Usually
the data show too little variation to estimate the slope parameter
Y, so usually we assume that v, = 1. Note that (; refers to the
latent variable for the missing data process. Further, we impose a
restriction on the difficulty of the item -steps:

o, =7+ (k— K)n,
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where 7 is the baseline (overall) level and n models a monotone
change in the probability of an observation as a function of the po-
sition of the item in the test. The reason for this restriction on
is that the first item-steps are usually taken by all respondents, so
the difficulty of these steps cannot be estimated. Further, the restric-
tion supports a monotonously decreasing probability of observing a
response.

3.2.2  Combined IRT models for Observed data and missing
data

The models that we will use for the comparison are analogous to the
MAR and NON M AR models described in Holman and Glas (2005)
and in the previous chapter (refer to equation (2.2) and (2.3)). The
likelihood of the M AR model is given by

1 p(@ikldir, 6: ., Br)p(diklGir Vs 1) 9(Gi) g (6:) (3.4)
ik

where p(zik|dik, 0,0, Br) is the measurement model, 6; is the la-
tent person ability parameter, and ag, 5 are item parameters of the
observed data. Further, p(d;x|(;, V&, Ox) is the model for the missing
data indicator and -, dr are item parameters of the missing data
process. Finally, g(¢;) and g(6;) are the densities of the latent para-
meters. We assume these densities to be standard normal. In (3.4),
the latent variables 6 for the observed data and ¢ for the missing data
process are not correlated and hence we can ignore the model for the
missing data i.e. for maximum likelihood estimation we can ignore
p(dik|Cis Vi, 0k)g(¢i). On the other hand, the NON M AR model also
described in Chapter 2 in this thesis, is the model where the missing
data process is included in the estimation. In that case, the latent
variables for both the observed data and the missing data process,
0 and (, respectively, are correlated by with a correlation parameter
3. The likelihood of the NON M AR model is written as

Hp(xik |dit, 0i,0, Br)p(dik| Gis Viy Ok) 9 (G, 03] 2)), (3.5)
ik

where ¢(-) is the density of (; and 6; which is assumed to follow a
multivariate normal distribution with mean vector 0 and variance-
covariance 3. Expressions (3.5) will be used in the procedure to make
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inferences when all latent variables for observed data and missing
data process are considered and then compared to the results on
values of item parameters estimates when the (3.4) model was used.

3.2.8 The Generalized Partial Credit Model (GPCM)

In general, the observed responses will be modeled by a multidimen-
sional version of the generalized partial credit model (Muraki, 1992).
In the unidimensional case, the person’s ability or proficiency is rep-
resented by a scalar parameter. However, in many cases it is a priori
clear that multiple abilities are involved in producing the observed
responses or the dimensionality of the ability structure might not
be clear at all. In these cases, multidimensional ability parameters
are needed to describe the ability or proficiency level of a person.
Béguin & Glas (2001) state that multidimensional IRT models can
serve confirmatory and exploratory purposes.

For persons i (i = 1,..., N) responding to item &k (k = 1, ..., K) the
probability of responding in a category g (¢ = 0,...,my) is given by

exp(g ZqQ kqliq — Brg)

0;) = p(Xikg = 110;, g, =

"/}kg( i) = p( ikg 10;, g, Br) 1 +E7;:kl eXp(thQ oaia — Bun)

(3.6)

where ap = {ag1,...0kg, ...axQ} is a Q-dimensional vector of dis-

crimination parameters or factor loadings, 6; = {0;1,...,6iq, ..., 0iq}

is a Q-dimensional vector of person’s parameters and (34 is a scalar
location parameter.

Model (3.6) will be a specific model depending on the values of
some of its parameters. When my = 1, (3.6) is the multidimen-
sional two-parameter logistic model (2PL; Birnbaum, 1968) which
is the one we use in the simulation studies reported in this chap-
ter and, further, (3.6) becomes the multidimensional partial credit
model (PCM; Masters, 1982; Masters & Wright, 1997) when oy = 1
and additionally, the multidimensional Rasch model for dichotomous
items when m; = 1 and o, = 1.

Note that the model for the missing data indicator (3.3) is a special
case of the GPCM given by (3.6). Therefore, both models can be
combined into one concurrent model, for instance a model of the
form of (3.5), by assuming a ()-dimensional model where the model
for the item responses only loads on the first ) — 1 dimensions, while
the model for the missing data indicator only loads on the Q-th
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dimension. The ensemble of the latent parameters of a respondent
then has a ()-variate normal distribution with a mean equal to zero
and a covariance matrix 3.

3.3 MML Estimation

Suppose x; is the response pattern of respondent ¢, and let X be the
data matrix. Under MML approach, it is assumed that possibly mul-
tidimensional ability parameters 6; are independent and identically
distributed with density g(0; \). Usually, it is assumed that person’s
ability is normally distributed with population parameters A (which
are the mean p and the variance o2 for the unidimensional case,
or the mean vector y and the covariance matrix X for the multidi-
mensional case). Item parameters ¢ consist of discrimination para-
meters (ag, or oy for the unidimensional and the multidimensional
cases, respectively) and the item difficulties 5, whose elements are
(Br1s Br2s - Brgs -+, Brmy, )- Given the remark in the previous section
that the models for the item responses and the missing data indicator
can be brought together in one concurrent model, MML estimation
will be described without explicitly distinguishing between item pa-
rameters and person parameters associated with the observations or
the indicators.

MML estimation derives its name from maximizing the log-likelihood
that is marginalized with respect to 6, rather than maximizing the
joint log-likelihood of all person parameters # and item parameters
¢. Let v be a vector of all item and population parameters that is
vt= (4", ). Then the marginal likelihood of v is given by

N
LMXJHZ/W/IMWMM%@M%MWi

that is
N
Lo X, D) = [ [ [ plxicdl6r,o)g0: Nt

and hence the marginal log-likelihood of v is

N
log (v X, D) = log [ [ . [ plx. cilo. 6)g(6:: Ao
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which is equivalent to the expression

N
log L(v; X, D) = Zlog/.../p(xi,di|9i,¢)g(9i;)\)dﬂi. (3.7)

We maximized the marginal likelihood since it gives us consistent es-
timates as compared to the ones obtained using the joint likelihood
which can be inconsistent. Neyman & Scott (1948) stated that if the
number of person parameters grows proportional with the number of
observations, then in general this leads to inconsistency when using
joint likelihood. Simulation studies of Wright and Panchapakesan
(1969) and Fischer and Scheiblechner (1970) showed that these in-
consistencies can indeed occur in IRT models. Kiefer and Wolfowitz
(1956) have shown that marginal maximum likelihood estimates of
structural parameters, say the item and population parameters of an
IRT model, are consistent under fairly reasonable regularity condi-
tions, which motivates the general use of MML in IRT models.

To derive MML equations, we will introduce the vector of deriva-
tives

0
wi(v) = 9 log p(x;, di, 0;|v) (3.8)

0
= 5, log p(xi; dilf; ¢) + log g(6:|A)]
Using Fisher’s identity (Efron, 1977; Louis 1982; also see, Glas, 1992,
1998), then the marginal likelihood equations for v can then be easily
derived. The first order derivatives with respect to v is written as

h(v) = aalogLv\XD ZE% xi,di,v)  (3.9)

where w;(v) is the expression in (3.8) and the expectation is with
respect to the posterior distribution p(6;|x;,d;,v). The identity in
(3.9) is closely related to the EM-algorithm (Dempster, Laird and
Rubin, 1977), which is a very useful algorithm for finding the maxi-
mum of a likelihood marginalized over unobserved data. This frame-
work fits the present application when the response patterns are
viewed as observed data and the ability parameters as unobserved
data. Together they are referred to as the complete data. When di-
rect inference based on the marginal likelihood is complicated, the
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EM algorithm is applicable in this situations. The complete data
likelihood equations, i.e., equations based on w;(v) are easily found.
Given some estimate of v as v*, the estimate can be improved by
solving " E(w;(v)|xi, dj, v*) = 0 with respect to v. Then this new
estimate becomes v* and the process is iterated until convergence.

Applications of this framework in deriving the likelihood equa-
tions of the structural parameters of the multidimensional GPCM
proceeds as follows. We will only consider finding the item parame-
ter estimates for the item responses, because the item parameter
estimates for the missing data indicators is completely analogous.
The complete likelihood is given by

p(xil0i,; dis @) = [T [T wrg(0) ik (3.10)

k g=0

The likelihood equations are obtained upon equating (3.9) to zero,
so explicit expressions are needed for (3.8). Given the design vector
d;, the ability parameter ; and the item parameters of the multi-
dimensional GPCM, the probability of response pattern x; is given
by (3.10). By taking first order derivatives of the logarithm of this
expression, the expressions for (3.8) are found as

wi(Cthq) =ik [Oiq(Tikg—Vikg)] (3.11)

and
wi(Brg) =dik (Vikg—Tikg), (3.12)
where ©);gp, =141 (0;), thus the likelihood equations for the item pa-

rameters are found upon inserting these expressions into (3.9) and
equate the resulting expressions to zero, hence

N N
> " E(Oiqvigdinlxi, d;,v) = E(digbigTinglx;, d;, v)

1

simplifying further
N N
Z E(giq¢ikgdik|xi7 dia U) = Z dikxikgE(giq|Xi7 dia U) (3'13)

and similarly

N N
> B(digtingx; diyv) =Y Edigaingx,, d;yv)

%
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then
N N
D dinE(inglx; djv) =D digwing (3.14)

To derive the likelihood equations for the population parameters, the
first order derivatives of the logarithm of the density of the ability
parameters g(0; A), where X is the vector of population parameters
which is the mean vector p and the covariance matrix 3 are needed.
In the present case, g(0; p,%) is the well-known expression for the
@-dimensional multivariate normal distribution with mean vector
and the covariance matrix ¥, whose probability density is

g(035)) = g(0:]p.3) = (2m) "2 8|7 exp (—1/2(0 — 1)'S71(0 — )

where |X| is the determinant of the covariance matrix, so it is easily
verified that these derivatives are given by

wiln) = 1/2(Z710 — p)) (3.15)

and
WD) = 1/20 - )0 —p)'S2— (S (3.16)
where elements considered in ¥ are the diagonals.
The likelihood equations to obtain u are again found upon insert-

ing these expressions in (3.9) and equating the resulting expressions
to zero, that is

ZE 0 p)|xi,A) =0

and by simplifying the expression by working on the expectations of
the stochastic variable § and the parameters we solve u as

YN E(0]xi,\)
- N

Similarly for 33, the resulting expression is

ZEG 1) (0 — 1) BN = ZE

ZE((G—u)w—u)tY?I/\) =N(E (3.17)
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and simplifying leads to

_ SV E(— )0 — 1) xi V)

b
N

Note that the standard errors are also easily derived in this frame-
work: Mislevy (1986) pointed out that the information matrix can
be approximated as

N
H(v, v)~ ZE(wZ(U) | xi,dj, v)E(wi(v) | xi,dg,v)t (3.18)

and the standard errors are the diagonal elements of the inverse of
this matrix.

The basic approach presented so far can be generalized in two
ways. First, the assumption that all respondents are drawn from one
population can be replaced by the assumption that there are multiple
populations of respondents. Usually, it is assumed that each popu-
lation has a normal ability distribution indexed by a unique mean
and covariance matrix. This generalization together with the possi-
bility of analyzing incomplete item-administration designs provides
a unified approach to such problems as differential item function-
ing, item parameter drift, non-equivalent groups equating, vertical
equating and matrix-sampled educational assessment as pointed out
by Bock and Zimowski (1997). Further, item calibration for CAT
also fits within this framework.

3.4 Simulation Studies

Simulation studies were conducted to asses the effect in the bias of
the item parameter estimates when a model for missing data is ig-
nored or included in a model for estimation as described in (3.4)
and (3.5). We divided the simulation study into two parts. The first
part consists of the data generation using the Rasch model (RM
or 1PL) and the second part was the estimation of the parameters.
Two models were used in the estimation of item parameters. The RM
model was used for the estimation of item difficulty parameter Sarar
when the model for missing data process was ignored (MAR model).
The RM version of the sequential (steps) model for the missing data
model was used for the model of the missing data when this model
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was included in the estimation that was concurrent with the estima-
tion of the RM model for the observed data. The item difficulty 0
of the conceptual items for the missing data indicator has 7 (overall
level) and 7 (increment) as components. Their main purposed was
described in the previous section.

For a sample size N = 500 persons, latent trait values (6;, (;) were
drawn from a bivariate normal distribution with means 0, and a co-
variance matrix ¥ with diagonal elements equal to one and correla-
tion p. This correlation between the latent variables for the observed
data and the missing data process where chosen to vary from 0.0,
0.2, 0.4, 0.6 and 0.8. The test was made of K = 10 items and the
items were dichotomously scored. The values d;; and x;; were drawn
from p(dix| Ci,6i,0k) and p(zik|dik, 0,04, Br) respectively. The gen-
erated data were used to compute estimates of the item parameters
ﬁ MAR when the M AR model was used and item parameter estimates
Bobss dobss Tobs and p when NON M AR model was used, respectively.

The values of ByrAR, Bobs, dobs, Tobs and p were compared with the
values of the parameters used to generate the data (true values) using
the mean absolute error (MAE) and mean squared error (MSE). For
the formulas to obtained MAE and MSE for the model parameters
refer to the equations (2.25) and (2.26) in Chapter 2.

One hundred replications were made for the combination of K =
10 and N = 500 and p = 0.0, 0.2, 0.4, 0.6 and 0.8. The same replica-
tions for the combination n = 1000 and same k and p was also done.
The difficulty parameters for the observed data is 8 = 0 while dif-
ficulty parameters for the conceptual items were 0 =-8, -7, -6, -5,
-4, -3, -2, -1, 0, and 1, respectively. These values were chosen such
that the item parameters will go from easy to difficult, that is, the
probability of observing an item response decreases. So most respon-
dents can respond the first items until they run out of time and then
they omit the succeeding items. This is the situation of missingness
we are dealing with, where missingness can not be ignored since the
response mechanism depends on the ability of the respondents. The
result of the simulations are given on Table 3.1 and Table 3.2 for
N =500 and N = 1000.
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TABLE 3.1. MAE of item parameter estimates under MAR and NONMAR
model (dichotomous Case); Estimation Model: (Observed data: 2PL; miss-
ing data: Steps model); Dimension of missing data process: 1; N=500, 1000;
K=10;a=1;8=0;7=1; p=p(0,().

Mean Absolute Error(MAE)

N p|Boas 71 T P BMAR
500 .0 | .107 .121 .288 .094 .107
2112 116 .294  .090 117
4112 122 299 .088 121

6| .114 .104 .253 .129 .126

81 .110 .070 .182 .138 .139

1000 .0 | .083 .077 .192 .061 .083
2| .077 082 .206 .067 .081

41 .079 078 .193 .075 .091

.6 | .078 .065 .157 .075 103

L 1.079 .049 128 .087 124

TABLE 3.2. MSE of item parameter estimates under MAR and NONMAR
model (dichotomous Case); Estimation Model: (Observed data: 2PL; miss-
ing data: Steps model); Dimension of missing data process: 1; N=500, 1000;
K=10;a=1; 8=0;v=1; p=p(0,()

Mean Squared Error(MSE)

N  p|Bs 1 T P BMAR
500 .0 .020 .031 .170 .015 .020
2 1.022 .023 .137 .011 .024

41 .022 .024 147 .014 .028

6 1.024 023 .134 .016 .030
81.024 .010 .057 .009 .044

1000 .0 | .012 .010 .059 .005 .012
.2 1.010 .010 .060 .006 @ .012

4| .011 .010 .059 .006 .016

.6 | .011 .008 .050 .007 .022

.81 .011 .004 .030 .004 .032
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We start the discussion of our results by introducing the notations
in the tables. Notation p(0, {) refers to the correlation of the latent
variables of the observed data 6 and the missing data process (. The
MAE(B\ObS) and MSE(B\ObS) refers to the mean absolute error and
mean squared error, respectively, of the estimates of the difficulty
parameter (5, when the NON M AR model was used. MAE(Sy4r)
and MSE(B8aar) refers to the mean absolute error and mean squared
error, respectively, of the estimates of the difficulty parameter Syrar
that ignored the model for the missing data (M AR model). The
other notations for the MAE’s and MSE’s of n, 7 and p refers to the
increment of the ‘conceptual’ items, the difficulty parameter of the
last ‘conceptual’ item and the correlation between 6 and (, respec-
tively.

The first row of each table are baselines, that is when there is
no correlation between the two latent variables, so when ignorabil-
ity holds. The results showed that when the correlation increases,
the MAE and the MSE of the estimates under the assumption of
MAR increased considerably. For instance, if we look specifically at
Table 3.1, where p increases from 0.0 to 0.8 with intervals of 0.2,
the MAE( Barar) had values of 0.107, 0.117, 0.121, 0.126 and 0.139.
These values of the MAE (or the bias) for the Sy;ar were inflated
as expected since the missing data process was excluded. It was also
true for MSE of Byrar. These results were analogous to the results
of the simulations of Holman & Glas (2005) and the results reported
in the previous chapter in this thesis.

The MAE and MSE values for B\Obs only showed random fluc-
tuation. Looking again in the Table 3.1, MAE(S,s) had values of
0.107, 0.112, 0.112, 0.114 and 0.110. On the other hand, MAE’s of
Mobs showed 0.121, 0.116, 0.122, 0.104, 0.070 and 7,ps showed 0.192,
0.206, 0.193, 0.157, 0.128. The errors of these parameters estimates
showed a decreasing trend. Since the marginal distribution of D did
not change as a function of the correlation, this trend cannot be
explained as a result of having more observations in D or more in-
formation in the responses in D. A possible explanation for such a
trend is that an increase in the correlation between 6 and ( results
in more collateral information on ¢ through #, and therefore more
information on 7 and 7. This collateral informations resulted on a
decrease in the standard error of the item parameter estimates for
the missing data indicators.
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The MAE values for estimated correlation p were 0.094, 0.090,
0.088, 0.129 and 0.138, which is an increasing trend. We have no
clear explanation of this phenomenon at the moment of this writing.

3.5 Real Data Application

To get an idea of the impact of the approach in a real data situation,
data from a calibration sample of an intelligence test for children in
primary education was analyzed (van Dijk & Tellegen, 2004). The
data set was made up 3145 children responding to of 30 items of a
speeded form of the test. The percentage of missing data was equal
to 27%. The first 5 items were responded to by all children, the last
five items were endorsed by 1004, 855, 786, 622 and 508 children, re-
spectively. The data ware analyzed using both the MAR (ignorable)
and NONMAR (nonignorable) models. The estimated correlation be-
tween the latent parameters of the observed data and missing data is
0.429, signifying that the missing data process cannot be ignored in
the estimation. For both approaches, the values of the items parame-
ters estimates were compared. Results of the parameters estimates
are given in Table 3.3. The notation diff means the difference be-
tween the estimates of the parameters. & and 8 were the estimates of
the item discrimination and difficulty respectively of the model that
includes the model for the missing data while & and 3 were the es-
timates of the item discrimination and difficulty respectively of the
model that ignored the missing data. The differences between the
estimates obtained using the two methods is plotted in Figure 3.1.
It can be seen that there is no trend on the difference between the
discrimination parameters, but the differences in the item difficulty
parameters clearly increase after the 20th item.
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TABLE 3.3. Item parameter estimates under MAR and NONMAR model
Real data (speeded test),N=3145 examinees K=30 items

item @ & diff s ¢ diff

1 0.876 0.847 0.029 -4.303 -4.277 -0.026
2 1.254 1.281 -0.027 -3.529 -3.550 0.021
3 1.208 1.210 -0.002 -3.132 -3.130 -0.002
4 0.777 0.773 0.004 -1.692 -1.690 -0.002
) 1.154 1.140 0.014 -0.687 -0.684 -0.003
6 0.340 0.351 -0.011 -1.398 -1.400 0.002
7 1.002 0.986 0.016 0.1930 0.1920 0.001
8 1.403 1.400 0.003 0.2680 0.2660 0.002
9 0.701 0.701 0.000 -0.377 -0.378 0.001
10 0.298 0.292 0.006 0477 0.4760 0.001
11 1.583 1.593 -0.010 0.197 0.1890 0.008
12 1.563 1.538 0.025 0.300 0.2890 0.011
13 0.342 0.347 -0.005 -0.078 -0.081 0.003
14 0.811 0.819 -0.008 -0.479 -0.490 0.011
15 0.893 0.885 0.008 0.907 0.8930 0.014
16 0.468 0.464 0.004 0.562 0.5520 0.010
17 0.402 0.394 0.008 0.997 0.9850 0.012
18 0.446 0.422 0.024 -0.957 -0.969 0.012
19 0530 0.529 0.001 0.858 0.8380 0.020
20 0.681 0.666 0.015 1.473 1.4370 0.036
21 0.696 0.685 0.011 1.279 1.2380 0.041
220920 0.908 0.012 -0.052 -0.111 0.059
23 0.689 0.689 0.000 1.396 1.3490 0.047
24  0.658 0.649 0.009 1.135 1.0800 0.055
25 1.071 1.052 0.019 1971 18710 0.100
26 1.209 1.192 0.017 2,591 2.4690 0.122
27 0485 0473 0.012 0.961 0.9060 0.055
28 0.2v6 0.265 0.011 2.083 2.0480 0.035
29  0.698 0.689 0.009 2.514 24260 0.088

w
)

0.467 0.457 0.010 1916 1.8500 0.066
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FIGURE 3.1. Plot of the differences of item discrimination and difficulty
estimates between MAR and NONMAR models.
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The impact of the difference between the MAR and NONMAR
models will be studied further by computing the global reliability
of the test. Usually, this is done by classical test theory. However, if
missing data are present, it is more convenient to compute the global
reliability via IRT. In an IRT framework, an index of reliability is
based on the identity

Var(0) = E(Var(0|x)) + Var(E(f|z))

(Bechger, Maris, Verstralen & Béguin, 2003). This identity entails
that the total variance of the ability parameters is a sum of two
components. The first component, E(Var(|z)), relates to the un-
certainty about the ability parameter. The posterior variance of abil-
ity, Var(6|z), gives an indication of the uncertainty with respect to
the ability parameter, once we have observed the response pattern x.
By considering its expectation over the distribution of x, we obtain
an estimate of the average uncertainty over the respondents’ ability
parameters. The second term, Var(E(0|x)), is related to the system-
atic measurement component. The expectation serves as an estimate
of ability, and by considering the variance of these expectations over
the distribution of z, we get an indication of the extent to which
the respondents can be distinguished on the basis of their observed
responses. Therefore, a reliability index taking values between zero
and one can be computed as the ratio of the systematic variance and
the total variance, that is

_ VCLT(E(9|ZL‘)).

Var(0) (3:.19)

In the present application, we can compute Var(E(0|z)) in two ways:
under the MAR assumption where we only condition of the observed
responses, and under the NONMAR assumption, where we condition
on both the observed responses x and the missing data indicator d.
In the latter case, we integrate over both latent variables involved,
so the expectation in the numerator of (3.19) is computed as

E(@\x,d)://9p(9,<\x,d)dedg

://9 p(x\d,9)19(65\4’)9(9,CIZ)deC
p(z,d) '
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Under the MAR assumption the global reliability was computed as
p = 0.658, under the NONMAR assumption it was computed as
p = 0.738. So in the present case, taking the missing data process
into account leads to a substantial increase in the estimate of global
reliability.

3.6 Discussion

The results of the simulation study showed that when an IRT model
for the missing data process was included in the estimation together
with an IRT model for the observed data, even how much we in-
creased the correlation between latent variables 8 and { that is, we
want to make the missing data mechanism more nonignorable, the
bias in the item parameters remained constant and lower compared
to the case when the model for the missing data was ignored in the
estimation. We conclude that the bias in the IRT parameter esti-
mates is reduce when an IRT model for the missing data process is
included in the estimation.

The method as applied in the real speeded test data indicated that
it is possible to model the missing data with an IRT model. The
results showed that the difference in the item parameters, especially
the difficulty parameters (refer to Figure 3.1), gets bigger. This is
expected since the respondents were under time limit conditions and
the items were getting difficult to endorse. So they skipped items
more in the end where item nonresponse were incurred. It was shown
that the estimate of the global reliability was larger when the missing
data process was taken into account.

For further research, it is of great interest to investigate the ef-
fect in the bias of the model parameters estimates when observed
covariates are included in the model for the missing data given that
the data came from a speeded test. From the results of the previ-
ous chapter we can expect that inclusion of the observed covariates
in the model for the missing data will support the reduction of the
bias in the parameters estimates. It is also further recommended to
investigate the effect in the bias of the model parameter estimates
when more complex IRT models for the observed scores are used.
Further, the concept of using the step model to model speededness
needs not be confined to a likelihood based framework. It can also
be applied to the complex IRT models that are usually estimated
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in a Bayesian framework. Examples are models with multiple raters,
multiple item types, missing data (Patz & Junker, 1999a,b), mod-
els for testlet structures (Bradlow, Wainer & Wang, 1999, Wainer,
Bradlow & Du, 2000), and models with a multi-level structure on the
ability parameters (Fox & Glas, 2001, 2002, 2003). Implementation
of NONMAR models in a Bayesian framework will be the topic of
the next two chapters.
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Detecting Nonignorable Missing Data
using the Splitter Item Technique

ABSTRACT: Researchers are often confronted with missing
data. Direct statistical inference is appropriate if the missing
data are ignorable. In a framework of item response theory, two
methods based on the splitter item technique are proposed for
deciding whether the missing data are ignorable or nonignorable.
In the first method, the observed item response data are split
according to the values of the splitter item. Then, the estimated
marginal distributions of the item parameters corresponding to
both data sets are compared for detecting differences. In the
second method, an IRT model for the observed data is extended
with group specific item parameters. These extra parameters
provide information regarding item parameter differences across
groups. They are estimated using MCMC and they do not in-
terfere with the estimation of the other model parameters. In a
simulation study concerning item-selection designs, both meth-
ods are illustrated and compared using probit IRT models.

KEYWORDS: Ignorability, Item response theory, Markov chain
Monte Carlo, Missing data, Splitter item technique.

4.1 Introduction

When data are collected using questionnaire or proficiency items
(usually in a sample survey), it is possible that there will be missing
observations. For making meaningful inferences it is necessary to find
out if it is appropriate to ignore the process that causes the missing
data. The missing data process or response mechanism is nonignor-
able when it depends on a respondent’s unobserved response and ig-
norable when the probability of a nonresponse is independent of the
respondent’s unobserved response. Bayesian (likelihood) inferences
based on the observed data are equivalent to the inferences based
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on the complete posterior (likelihood) reflecting both the observed
data and the response mechanism when the response mechanism is
ignorable.

Most of the literature on missing categorical data assumes an ig-
norable response mechanism. However, handling nonignorable nonre-
sponse is getting more attention. Fay (1986), Baker and Laird (1988),
and Green and Park (2003) proposed a class of log-linear models
for categorical responses subject to nonignorable nonresponse. In a
simulation study, Park and Brown (1994, 1997) showed that it is
important to decide whether the underlying response mechanism is
ignorable or nonignorable. Lord (1983) was one of the first to de-
velop a mathematical model for omitting behavior when the usual
item response theory (IRT) models for dichotomously scored mul-
tiple choice items cannot handle appropriately omitted responses.
O’Muircheartaigh and Moustaki (1999), and Moustaki and Knott
(2000) proposed so-called symmetric pattern models for handling
item nonresponse in attitude scales. A set of questions is used to
measure some underlying latent attitude or ability but the observed
item responses contain missing values. They developed a nonignor-
able nonresponse model based on a latent basic response propensity
that describes the tendency of respondents to respond. The proba-
bility of an item response depends on the response propensity value.
An individual’s response to an item does not depend on its propen-
sity value but only on the value of the individual’s latent attitude.
Bradlow and Zaslavsky (1999) proposed an IRT model for ordinal
customer satisfaction data. The item nonresponse, that might be due
to either lack of a strong opinion or indifference about the question,
was modeled by a logistic regression model. Bradlow and Thomas
(1998) showed in a simulation study that common IRT models can-
not be used for likelihood or Bayesian inference when the missing
data mechanism cannot be ignored. In this particular case, assum-
ing an ignorable response mechanism leads to bias in parameter es-
timates. Holman and Glas (2005) proposed several IRT models for
modeling nonignorable nonresponse.

A relevant issue when analyzing item response data with missing
data concerns the process that causes the missing data. When the
response mechanism is ignorable, a statistical analysis based on the
observed data always leads to correct inference of the data. When the
response mechanism is nonignorable, one can eliminate bias only by
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constructing a model that correctly represents the response mech-
anism (Little, 1982). However, such models are highly sensitive to
misspecification error and they substantially complicate the statisti-
cal inference. Therefore, it is recommendable that first the necessity
of such a complex model, that is, a model for the observed data ex-
tended with a missing-data model, is verified. On the other hand,
most of the literature on missing data for categorical problems as-
sumes that the process that caused the missing data can be ignored.
In these cases, the assumptions for ignorability should be checked.
In the present paper, two methods will be proposed to verify
whether the missing data mechanism can be ignored or not in case of
item nonresponse. It will be assumed that the probability of the ob-
served pattern of missing data may be depending on possible values
of the missing data and/or the parameters of the data and the para-
meters of the missing data may not be distinct. No other variables
relate to the item score missingness. Both cases lead to a nonignor-
able response mechanism (Rubin, 1976). In the first method, the
splitter item technique (Molenaar 1983; Van den Wollenberg, 1979)
is used for splitting the data in two groups depending whether the
response item was observed or missing. Then, the marginal posterior
distributions of the item parameters corresponding to both groups
are compared. In the second method, an IRT model for the observed
data is extended such that item parameters may fluctuate across
groups. The extra parameters in this more general model are called
Bayesian modification indices (Fox and Glas, 2005) and provide in-
formation about the relevance of the model extension. In this par-
ticular case, they are used to test whether the response mechanism
is nonignorable. The parameters of the IRT model for the observed
data are estimated using MCMC (Gelfand and Smith, 1990). The
BMI values are sampled given the sampled values of the IRT pa-
rameters. However, these extra draws do not influence the Markov
chain and the chain remains restricted to the manifold of the poste-
rior of the IRT model. It will be shown that the estimated marginal
posterior distribution of the BMI values are closely related to their
true marginal posterior distribution. As a result, BMI values are
sampled as by-products of the MCMC procedure for estimating the
parameters of the IRT model for the observed data. The MCMC
estimation procedure can be time-consuming and it is, therefore,
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preferable to compute certain fit statistics during the estimation of
the model parameters.

In the next section, a general notation is given for IRT models for
the observed data and models for the missing data process. Models
for the missing data process are introduced to illustrate the aspect
of distinctness. Then, the splitter item method will be described and
details will be given of both methods for testing whether the miss-
ing data process can be safely ignored. Next, both methods will be
applied in three experiments concerning item selection with artificial
data. Finally, the last section contains a discussion and suggestion
for further research.

4.2 Model and Notation

4.2.1 IRT model for the observed data

The categorical outcome, y;i, represents the item response of person
i(i=1,...,N) onitem k (k = 1,...,K). These item responses
may be dichotomous or polytomous. Let 6; denote the latent abili-
ties or attitudes of the respondents responding to the K items. They
are collected in the latent vector 6. For dichotomous item responses
a two-parameter IRT model is used for specifying the relation be-
tween the examinee level on a latent variable and the probability of
a particular item response. That is

P(yik =1 ‘ Gi,ak, bk) = @(akﬁi — bk), (4.1)

where a is the item discrimination parameter, and by is the item
difficulty parameter. The item parameters will also be denoted by
&, with &, = (ag,br). The function @ is the cumulative standard
normal distribution. For polytomous item responses, the probability
that an individual obtains a grade ¢ (¢ = 1,...,C) on item k is
defined by a graded response model (GRM)

Py = ¢ | 0;, ap, ki) = ®(apdi — kpe—1) — ®(arbs — kre)  (4.2)

where the boundaries between the response categories are repre-
sented by an ordered vector of thresholds x such that ki, > kg
whenever r > s, with kg = —oo and ko = oo. In this case let
&, = (ag, k). Consequently, there are a total of C'— 1 threshold
parameters and one discrimination parameter for each item.
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4.2.2 A latent variable model for the missing data process

The data matrix of the observed data is partitioned into two parts,
the observed part y,s and the missing part y,,;s. The pattern of the
missing data is given by a matrix d, of the same dimension as y and
equals one when an item is observed and zero otherwise. Although
the proposed techniques can be applied to any missing data process,
it is assumed that the binary responses (response, nonresponse) are
indicators of an underlying latent variable ¢, which represents the
tendency to respond (see, for example, Holman & Glas, 2005; Mous-
taki & Knott, 2000; O’Muircheartaigh & Moustaki, 1999). The ac-
tual response y;; itself depends on the individual’s attitude level but
the probability of a response depends on the individual’s response
propensity. The nonresponse or missing observations may include
unit non-response, where a respondent does not respond to any of
the items, and item non-response where the respondent does respond
to some but not all of the items. Attention will be focused on item
nonresponse although unit nonresponse is a more serious problem.

The occurrence of missing data is viewed as a random phenom-
enon. That is, the occurrence of missing data, in terms of item non-
response of persons responding to an item, is governed by a random
process that caused the missingness. Let (,¢ denote the parame-
ters of the missing-data process, where ¢ are person parameters and
¢ item parameters. Then, p(d | {, ¢) represents the latent variable
model for the missing data mechanism. This latent variable model
may exists of one or more factors, and can be defined as a confirma-
tory factor model or an item response theory model. That is, it will be
assumed that the pattern of missing data are represented as a func-
tion of one or more latent variables. In the present paper, attention
is focused on a nonignorable response model by allowing the attitude
parameter 6 to affect the probability of responding. So, p(d | €, ¢, @)
is a nonignorable response model. An individual response depends on
both the individual’s ability or attitude and propensity to respond.
For example, examinees with high math abilities may have a higher
probability of responding to a math item than examinees with low
math abilities. Further, the probability of a missing response depends
on an attitude as well as a personality trait (Holman & Glas, 2005),
or when measuring customer satisfaction, nonresponse is related to
the latent opinion, since a nonresponse indicates a lack of knowledge
or interest (Bradlow & Zaslavsky, 1999).
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4.3 Detecting a Nonignorable Missing Data
Mechanism

The complete data-likelihood of (y.ps,d), given the model parame-
ters can be factorized as

p(YObsy d ’ 97 Ca £7 d)) = p(YObs ‘ d7 07 £)p(d ’ 97 C: d))a (43)

where it is assumed that the missing data are missing at random.
Inferences for (£, ¢) are based on this joint distribution combined
with the priors for the model parameters. It is a priori assumed
that the attitudes or abilities underlying the observed responses are
independent of the propensity to respond. Therefore, the prior for
each latent variable is a standard normal distribution. This way the
mixture of models, the model for the observed responses and the
missing data mechanism, is identified. Both parameters & and ¢ have
proper noninformative priors. It follows that the marginal posterior
distribution of the item parameters £ can be specified as,

D(€ | Yobs: d) o / / / D(Yors | 4.6.€)p(d | 6.C, )
p(O)p(C)p(E)p(d) dpdCdo  (4.4)

When the 0 values do not interfere with the probability of respond-
ing, inferences about &, ignoring the process that causes the missing
data, is appropriate. In this particular case, the missing data mech-
anism is ignorable, also assuming that the missing data are missing
at random, and equation (4.4) simplifies to

p(£ | y{)b87d) X /p(YObs | d,0,.§)p(0)p(.§)d0 (45)

As a result, inferences based on the distribution (4.5) are equivalent
to inferences based on the full distribution, see the right-hand side
of Equation (4.4).

4.83.1 The splitter item technique

In arich-data situation the data can be split in two samples according
to the scores of one item, the splitter item. This method of splitting
the data is quite common and can be used for general problems
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like model assessment and selection. In this particular case, it is of
interest to test whether the manner of splitting affects the statistical
inference. That is, the splitter item technique is used to test whether
the process that causes the missing data can be ignored.

Two samples are obtained when the observed item response data
are divided according to the scores on a particular item k. In Fig-
ure 4.1 the splitting of the data (y.ps,d) is given in a diagram. The
missing data indicator of item k splits the data in two samples. The
first sample, denoted as the observed group; the observed item re-

sponses of individual i except those to item k, yz(;l]: 3 with d;, = 1,
1 =1,...,n. The second sample, denoted as the missing group: the

observed item responses of individual ¢ except those to item £, yz(;fz)s

with djr, =0,2=1,...,n.

The occurrence of missing data patterns is modeled by a latent
variable model. As a result, this splitting of the data in two groups
depends on the values for ¢, @ and some model parameters ¢. After
splitting the data, the marginal posterior distributions of the item
parameters for the observed data are py;s (£ | yobs,d(*’l‘c),dl€ = 0)
and Pops (£ | Yobs, dHF) q;, = 1) for the missing and observed group,
respectively. It follows that the statistical inferences derived from
these posterior distributions are different when @ affects the proba-
bility of responding to an item and accordingly influences the way
the data are divided.

For example, assume that students were permitted to choose a
subset of items of varying difficulty and that the better students
choose the easier items, since they can better decide which items
are easier (Bradlow & Thomas, 1998). In this case, 8 represent the
individuals’ math abilities, and the data are divided in a high level
and low level group. The weaker students may select the harder items
and make them appear even more difficult. So, the estimates of the
corresponding difficulty parameter are biased. The better students
select the more easier items and make them appear even more easier.
Analogous, biased estimates of the difficulty parameter are obtained.

In summary, the splitter item technique is used to detect a nonig-
norable missing data mechanism by comparing the marginal poste-
rior distributions of the item parameters given both samples. Results
can be compared using summary statistics for the sampled values
from the marginal posterior distributions, such as the posterior mean
or median.
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4.8.2  BMI based on the splitter item technique

BMI were introduced by Fox and Glas (2005) for detecting model
violations of the 2PNO model, differential item functioning and vio-
lations of the assumptions of local independence. They extended the
2PNO model with extra parameters such that the assumption to be
tested is violated. An indication of a model violation is found when
the estimated extra parameters are significantly different from zero.
The marginal distribution of the extra parameters is unknown but
samples from a so-called Bayesian modification (BM) distribution,
that is a good approximation of the true marginal posterior distri-
bution, can be obtained from an extra sampling step in an MCMC
algorithm for sampling the parameters of the 2PNO model. BMI are
useful when the number of model violations are large, or when esti-
mating the parameters of the more general models is difficult and/or
time-consuming.

The relation between the categorical outcomes and the underly-
ing latent variables, equation (4.1) and (4.2), can also be explained
in terms of a random variable z;, with mean ai6; — b, or aib; for
binary or polytomous outcomes, respectively, and variance 1 (see,
Albert, 1992; Johnson & Albert, 1999). The binary response y;i is
the indicator of z;; being positive, and the polytomous response can
be viewed as an indicator of z;, falling into one of the line segment
associated with response categories. It follows that,

Yik =0 < 25 <0

Zik = aib; — by, + e;, such that
ik kY4 k ik {ka -1 o 7z >0 (46)

zix = aib; + e;, such that y;, = ¢ < Kre—1 < 2ik < Kke,

where —00 = Ky < K1 < ... < Ko = 00, and z;; normally distrib-
uted. The resulting model is the ordinal probit model for dichoto-
mous or polytomous data, respectively. This ordinal probit model
will be considered as the null-model.

The data are divided, according to the values of splitter item, in
an observed (j = 1) and a missing group (j = 0). In case of nonig-
norable nonresponses, the item parameter estimates given the item
responses of the observed group will differ from the item parameter
estimates given the item responses of the missing group. This item
bias can be modeled by extending the null model, equation (4.6),
with fixed group effects that represent the item bias due to nonig-
norable nonresponses since the grouping of the data is based upon
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the values (observed/missing) of the splitter item. Extending the
two-parameter model for dichotomous data leads to

zijk = apbiy — be + (Mjrwij + A2jk) + €ije, (4.7)

where j = 0,1, and w;; is an explanatory variable which might be 60
or an observed covariate either within the test (test score) or outside
the test. The magnitude of the extra parameters, Aji = (Aijk, A2jk)s
depends on the extent to which the difference z;;, and ai0;; — by,
is properly modeled. It follows that the response mechanism is not
ignorable when the estimated group effects are significantly different
from zero. Note that item bias in the discrimination parameter is
modeled when one of the explanatory variables is a function of .
This fixed effects model in (4.7) can be written as a linear regres-
sion model using an indicator variable x5. The ith case of x5 equals
one when the ith case of the splitter item is observed and zero oth-
erwise or vice versa. In this case, the fixed effects model is identified
by fixing one of the two group effects to zero, and the subscript j of
parameter A can be dropped. The multiple regression model then is
as follows:
z, = a0 — by, + X9 (/\1kw + )\gk) + ey, (4.8)

where the z;, and @ are the augmented responses and latent attitudes
or abilities of all respondents, respectively. In the same way the or-
dinal probit model, equation (4.6), can be extended to handle item
bias. It follows that,

2, = ard + xo (A1pw + Aai) + e, (4.9)

where e are independent standard normally distributed. As for the
two-parameter model, item bias in the discrimination parameter is
modeled when one of the explanatory variables is a function of 6.
Item bias in the threshold parameters is modeled by g since it
allows thresholds to vary across groups. In the simplest case,

P(ziji < Bie | 0ij, ag, i, A2) = @ (kre — (anbij + Aok))
= D ((kke — A2k) — agbij).

As a result, in group j the original thresholds for item k, ki, are
simultaneously shifted yielding the thresholds & + Aor. Thus, the
effective thresholds vary across groups when the missing data mech-
anism cannot be ignored. The thresholds for item k, ki, represent
the average across groups.

(4.10)
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4.4 Bayesian Estimation

Bayesian inference typically requires the computation of the poste-
rior distribution for a collection of random variables (parameters or
unknown observables). Therefore, numerous simulation-based meth-
ods have been developed and implemented within the Bayesian para-
digm, e.g. importance sampling (Chen, Shao, & Ibrahim, 2000; Rip-
ley, 1987), and Markov Chains Monte Carlo (MCMC) algorithms
(see for e.g., Robert & Casella 1999; Gelfand & Smith, 1990; Gel-
man, Carlin, Stern & Rubin, 2004). In specific, MCMC procedures
for sampling the parameters of logistic and probit IRT models were
formulated by, among others, Albert (1992), Fox and Glas (2001,
2003), Hendrawan (2004), Johnson and Albert (1999), Maris and
Maris (2002), and Patz and Junker (1999a, 1999b). A wide range of
MCMC algorithms were developed for other latent variable models
(e.g. Casella & Robert 1999; Congdon, 2002). More specific, Bradlow
and Zaslavsky (1999) developed different MCMC schemes for sam-
pling the parameters of a latent variable model for a missing data
mechanism.

When employing the splitter item technique, and modeling both
observed data sets, all parameters are sampled using MCMC. This
way, values are sampled from pp,s (5 | Yobs, dTF) dj, = O) and
Dobs (5 \ Vobs, dF) di = 1) by sampling from their full condition-
als. These group specific sampling steps are easily derived from the
general procedure for sampling item parameter values. For exam-
ple, in case of a normal ogive model for binary item responses with
splitter item K. Let ¢ denote the iteration number of the Markov
chain.

Algorithm 1
Sample augmented data z, for i = 1,...,n;,k =1,..., K — 1 and
7 =0,1:

P

N(ajkei — bk, 1),
if Yiji 18 missing
N(ajk@- — bjka 1)I(Zijk > 0),
if yijr =1
N(ajkei — bk, 1)I(Zijk < 0),
| & Yijk =0

2 | Yobs, AR, 0 0D
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Sample latent parameters 0, fori=1,...,n;, and j =0,1:
t ) L(t—1 _ _
0. |2\, €'Y ~ W ((alay) tal(zy; + by), (alay) L) p(d;)

where a; = (a;1,...,0jK-1)-

Sample item parameters &y, fork=1,...,K —1 and j =0,1:
2 -1
€ 128,09 ~ N (&, (HIH,) ) p(es0)

where H‘7 = (0]’ ]_nJ) and é]k) = (H;H])_IH‘?Z]k

In summary, values from the marginal distribution of the group
specific item parameter estimates are easily obtained using MCMC
when modeling the observed data. Then, summaries of these mar-
ginal posterior distributions can be used to decide whether the miss-
ing data process can be safely ignored.

4.4.1 Sampling BMI parameters

The BMI values are sampled as an extra step in an MCMC algorithm
for estimating the null-model parameters. This way, sampled values
of the BM distribution are obtained when estimating the parameters
of the null-model. The extra step in the MCMC algorithm consists
of sampling values of A given sampled values of the IRT null-model
parameters. These extra draws do not influence the chain, and the
Markov chain remains restricted to the manifold of the posterior
corresponding to the null-model. It will be shown that the resulting
estimate of the marginal posterior of A is a good approximation of
the true marginal posterior distribution.

A general model that includes the models in equation (4.8) and
(4.9) for the observed data, with the extra BMI parameters A for
modeling the item bias can be written as,

Zp = X1 + Xo\g + €, (4.11)

where x7 is an n x 7 and X2 an n X 2 matrix with rank r and 2, respec-
tively, and e, are normally distributed with variance 0. Note that
X1 = (0, —1) with r = 2 and v, = (ak,bk) for binomial observed
data and x; = @ with » = 1 and v, = aj for ordinal polytomous
data. The full conditional distribution of the BMI parameters can
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be specified explicitly. Therefore, define the least squares estimate of
v and Ag as

-1
5 L t
Y& XiX1 XiX2 t Vit Vi2 | ¢ t
Q = h h X'z = X Zj = VX Zj,
Ak X95X1 X9Xo V21 V22

with v = (x'x)7! and x = (x1,x32). It follows from linear regres-

sion theory (see, e.g., Box & Tiao, 1973, p. 116-118) that the true
marginal distribution of Ay given z; according to the full model is a
bivariate t-distribution t, [S\k, R (e 2)] , where r + 2 equals
the dimension of (’yk, )\k) and s? is an estimate of the residual vari-
ance of the model in equation (4.11) using a noninformative reference
prior for A; and ~y,..

Let z and 0 be given. Then, the null-model is given by

Zi = X1y + €k, (4.12)

where ey, are normally distributed with variance og. An MCMC al-
gorithm is extended by sampling BMI values of A. Let ¢ denote the
iteration number of the Markov chain.

Algorithm 2

t—1
sample ’yg) | zk,ag( )

¢ t
sample 08( ) | zk,'y,g)

sample )\,(f) | zk,'yl(f),ag(t)

Notice that the sampled values of A; do not interfere with the
sampling of the other parameters. Further, the grouping index j only
applies for sampling BMI values. It is assumed that the elements of A,
Y, and log(og) are uniformly and independently distributed. Then,
the full conditional distribution of v, equals

Vi | 2, %1, 08 ~ N (Fgxq > 05 v11) (4.13)

where 7}, , is the least squares estimate of v, given x1 and z. Fur-
ther, the full conditional of 03 equals

U(%(t) | Zk, Vi ~ IQ(%, Z(sz — X1’)’,(€t))2/2>. (4.14)

7
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Accordingly, as an extra MCMC step values of the BMI parameters
are sampled from the full conditional distribution,

Ak | Zk7X,’7k703 ~ N(j\kﬂLVﬁVﬁl (7k_’s/k,x1)7o-g (V22—V§2Vf11V12)>-
(4.15)
The Bayesian Modification (BM) distribution is obtained by inte-
grating the conditional distribution of A with respect to the null
model parameters using MCMC. That is, the MCMC algorithm
is used for obtaining sampled values from the Bayesian Modifica-
tion (BM) distribution. Let p(.) denote the BM distribution, and
{(ylgm),ag(m)),m = 1,...,M} an MCMC sample from the joint
posterior distribution p('yk, od | z). It follows that

o0
P( Ak |z, %) :/0 /Qﬁ()\k | ZmX,‘Yk?US)p(‘Yk’US | mel)d‘mdag

M
= ]\}E»noo 1/M7nZ:1]5()‘k | Z, X, 7](€m)7 O-g(m)>a

(4.16)
where 2 = {7, € R"}. In the Appendix it is shown that the marginal
BM distribution in equation (4.16) is the bivariate t-distribution
to [S\k,sgvm,n - r], using a noninformative reference prior for Ag
and ~y;. Here, s3 is an estimate of the residual variance of the null-
model in equation (4.12). As a result, the marginal BM distribution
approximates the true marginal posterior distribution very good. It
is not expected that the residual variance, sg, differs much from
the larger residual variance s? since the measurement null-model

contains all relevant (latent) variables.

4.5 Simulated Examples

Bradlow and Thomas (1998) analyzed simulated response data from
an examination that allowed students to choose a subset of items.
In this choice-based examination, a subset of items was presented in
pairs of items and the examinees choose to respond to one of them.
No responses are given to those items that are not selected. The
choice mechanism can only be ignored when the examinees randomly
select items. Recently, the fairness of item-selection has been further
investigated by Allen, Holland, and Thayer (2005).
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The two experiments by Bradlow and Thomas (1998) are used to
demonstrate the splitter item technique for detecting nonignorable
missing data. In both experiments, 5000 abilities and 20 difficulty pa-
rameter values were generated from a standard normal distribution.
These parameter values were used to generate item response data
according the Rasch model. The last ten items were considered as
paired items. In a third experiment polytomous IRT data were gener-
ated according the ordinal probit IRT model. A response mechanism
simulated that respondents with a negative strong opinion are more
likely to give a nonresponse. This corresponds with well-known cases
where respondents refuse to give a socially undesirable answer.

In all three experiments below, Gibbs sampling algorithms were
used for estimating the IRT models for binary and polytomous data.
For each model, 20,000 iterations were used for estimating the model
parameters with a burn-in period of 1,000 iterations. Convergence
of the Markov chains was easily established using plots of sampled
values and using several convergence diagnostics (Gelman et. al.,
2004). For further details regarding the sampling procedure refer to
Albert (1992) and Johnson and Albert (1999). All IRT models were
identified by fixing the scale of the posterior distribution of the latent
variable with mean zero and variance one.

4.5.1 Ezxperiment 1

In the first experiment, the examinees with positive abilities chose
the easier items within pairs with probability p; = .95 and the harder
item with probability ps = .05. These examinees can often decide
which of the two items is easier. The examinees with negative abil-
ities chose one of the items randomly. So, the distribution of the
response mechanism depends on the ability parameters 6 underlying
the observed responses and the difficulty parameters. As a result,
the missing data are missing at random but the parameters of the
missing data process, ¢, are not a priori distinct from 6. Inferences
about @ cannot be based on the posterior distribution p(0 | yops)
ignoring the missing data mechanism.

The BMI parameters A were defined according to equation (4.8)
with indicator variable x5 equal to one if the corresponding value
for the splitter item was missing and zero otherwise. These BMI
parameters represent item bias for the so-called missing group, the
set of observed item response data with nonresponses for the splitter
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item. According to missing data mechanism it was expected that the
item difficulties varied over groups since the distribution of abilities
varied across groups.

In Table 4.1 are the posterior means and standard deviations given
of the difficulty parameters for different subsets of item response
data. The posterior means of p(b ] yobs) correspond to the estimated
item difficulties given all observed item response data. It can been
seen that for each paired item the difficult item is overestimated and
the easy item is underestimated. In most cases the better students
choose the easier item and make them appear even more easier. This
is in contrast to the harder items. These items were selected by the
weaker students and they make them appear even more difficult. The
observed item response data were grouped according to the values
of item 20. This splitter item was paired with item 19, item 19 was
the easier item. As a result, most of the better students chose to
make item 19 and they are denoted as the missing group. Most of the
weaker students chose to make the more difficult item 20, denoted as
the observed group. It can be seen that the true item difficulties are
highly overestimated by the posterior means of pgps (b | Yobs, doo =
1) since the item responses of the observed group correspond to
the weaker students. Subsequently, the posterior means of p,,;s (b |
Yobs, d2g = 0) are lower than the true item difficulties. The difficulty
parameter of item 19 could not be estimated since the students of
the observed group did not respond to item 19. It can be concluded
that the pattern of missing data is affected by the abilities of the
students. That is, the examinee’s propensity to respond correlates
with their ability and this results in nonignorable missing data.

The BMI values are sampled under the null-model for the missing
group. The posterior means are all negative indicating that the stu-
dents in the missing group make the items appear more easier. The
estimated BMI values cannot capture the difference between the esti-
mates given all data and the estimates given only the item responses
of the missing group. This follows from the fact that the other model
parameters are estimated under the null model. However, the esti-
mated BMI values are for most items significant given the 95% high-
est posterior density intervals (HPD), that is, the value zero was not
contained in the HPD region. The grouping of the data according
to splitter item 20 resulted in various significant fixed group effects
indicating that the way of grouping the data (observed/missing) af-
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fects the results. The set of responses to the last ten items contains
missing values that caused a reduction in size of the estimated BMI
values.

The choice of the splitter item may affect the results. The last
ten items can be considered as potential splitter items. All BMI
values are sampled in one MCMC algorithm for estimating the null
model for each possible splitter item. This procedure requires only
extra sampling steps. In Figure 4.2, the posterior distributions of the
BMTI’s are given for splitter item 12, 17, and 20. These items are all
easy items in the pairs of items. It can be seen that the results are
not depending on the splitter item since the estimated BMI values
and their distributions are comparable.

4.5.2  Ezxperiment 2

In the second simulation, each examinee first responded to both items
of a pair, and, contingent on the responses, then submitted only one
response and left the other response missing. This was done accord-
ing to the following rule. For each of the paired items, each examinee
chose randomly one of the items when both responses were either cor-
rect or incorrect. If one of the responses within a pair was correct
and the other one incorrect, then the examinee chose the correct
one with probability p; = .75 and the incorrect one with probability
1 — p1 = .25. The response mechanism cannot be ignored since the
missing data are not missing at random. That is, the distribution of
the missing data mechanism depends on the missing values.

In the second and third column of Table 4.2, the true and es-
timated item difficulties are given using all item response data. As
expected, the item difficulties of the paired items are underestimated.
This follows from the fact that students are tended to select items
when they knew the correct answer. The last item was used as a
splitter item and the data were grouped in an observed and a miss-
ing group. However, if examinees responded to item 20 they did not
respond to item 19, and the other way around. As a result, the split-
ter item technique does not provide any additional information since
the responses to item 19 of the missing group correspond with all ob-
served responses to item 19, and the observed group did not respond
to item 19. The patterns of missing data corresponding to a pair of
items are only depending on the values of the missing item responses
to this pair of items. Therefore, it was not expected to detect any
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differences between the estimated item difficulties corresponding to
the grouped data.

In Table 4.2 it can been seen that the estimated posterior means
based on the item responses of the observed group (fifth column) are
slightly higher than the estimated posterior means based on the item
responses of the missing group (seventh column). Because item 20
is much easier than item 19, the observed group consists of weaker
students. They knew the correct answer to item 20 but not to item 19.
However, this effect is in most cases very small and not significant
given the posterior standard deviations. This is supported by the
estimated BMI’s, defined as in experiment 1. These estimated BMI
values were around zero and not significant.

4.5.8 Ezxperiment 3

In collecting data via surveys it is often assumed that the respon-
dents are willing to cooperate and respond honestly to the survey
questions. In case of sensitive topics, respondents may be tended to
provide more socially desirable answers or provide nonresponses. In
the same way, lack of a strong opinion or indifference can also lead
to nonresponses (see, e.g., Baker and laird, 1988; Bradlow and Za-
slavsky, 1999). De Leeuw, Hox, and Huisman (2003), and Sijtsma
and van der Ark (2003) discuss several types of missing item scores.
Item response data were generated according to the ordinal probit
model with three response categories and discrimination parameters
set to one. The attitude parameters were generated from a stan-
dard normal distribution. The ordered threshold parameters were
generated from an uniform distribution restricted to the interval
[—.75,—.50] U [.50,.75]. For the last ten items out of twenty items,
nonresponses were generated. Respondents scoring in the lowest cat-
egory had a probability of 40% of a nonresponse and others 20%.
As a result, the missing data are not missing at random since the
distribution of the missing data mechanism depends on the missing
values. Respondents with low attitude values provided responses in
the lowest category, and, subsequently, they had a higher propensity
to give a nonresponse than respondents with high attitude values.
The willingness to give a (negative, mild, positive) response was cor-
related with the respondents’ attitude being measured, that is, the
attitude parameter was correlated with the parameter of the missing
data mechanism.
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The last item was used as a splitter item, and the data were split
in two groups, a missing and an observed group. The item parame-
ters were estimated using MCMC given all observed data and the
group specific item response data. In Figure 4.3 are the threshold
estimates given corresponding to the full and partitioned data set. It
can be seen that the true threshold values are underestimated when
using all observed data. About 25% of the item response data is
missing and about 44% of the missing item responses were scores in
the lowest category causing an underestimation of the true threshold
values. It appears as if respondents score relatively often in a second
or third category. However, respondents, who were inclined to score
in the first category, more often refused to give an answer. It follows
that the estimated threshold parameters given the item responses of
the missing group are higher than the estimates given all observed
data. The missing group contain respondents with lower attitudes
and they are more inclined to score in the first category. Most of
the corresponding 95% HPD regions of the estimated threshold pa-
rameters given the item response data of the missing group do not
contain the estimated threshold values given all observed item re-
sponse data. The partitioning of the data based on the values of the
splitter item (observed/missing) resulted in different item parameter
estimates and, subsequently, the missing data are nonignorable.

Again, BMI values are sampled under the null-model for the miss-
ing group. In Figure 4.4 are the marginal posterior distributions given
of all BMI parameters using the last item as the splitter item. The
estimated BMI values captured the difference between the estimates
given all data and the estimates given only the item responses of
the missing group. That is, more than 50% of the estimated BMI
values are significant given 95% highest posterior density intervals
(HPD). Note that the estimated posterior means are negative since
this corresponds with a shift upwards in threshold values, see Equa-
tion (4.10).

In all three experiments, the mechanism for generating missing
item responses was known to produce nonignorable missing data.
The proposed method detected nonignorable missing data in two
experiments. In all three experiments, it was investigated that the
splitter item technique did not detect significant differences in item
parameter estimates across groups in case of ignorable missing item
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response data. In this case, the data were grouped completely at
random, and significant differences were also not to be expected.

4.6 Discussion

The splitter item technique can be used to test whether the response
mechanism leads to ignorable or nonignorable missing data. In this
proposed procedure, it is tested if the item parameter estimates differ
across the subsets of item response data. Differences in item para-
meter estimates across subsets indicate nonignorable missing data
since the splitting of the data was done according to the values of
the splitter item (observed/missing). Two methods were proposed for
detecting differences in estimates across groups. In the first method,
all parameters are estimated given the subsets of item response data.
Then, summary statistics of the estimated marginal posterior distri-
butions of the item parameters can be used for detecting differences.
In the second method, parameters of an IRT model for binary or or-
dinal responses are estimated given all observed data using MCMC
and, as an additional sampling step, BMI values are sampled. These
BMI values provide information regarding any fluctuations in item
parameter values across subsets of item response data. In the Ap-
pendix, it is shown that the Bayesian Modification distribution is
a good approximation of the true marginal posterior distribution of
the item parameters. As a result, the BMI values can be obtained as
a by-product of the MCMC algorithm for estimating the parameters
of an IRT model.

Further study is focused on the generalization of the BMI ap-
proach to more complex models. One of the main advantages of
estimating IRT models using a fully Bayesian approach is that tra-
ditional frequentist approaches break down because of the infeasible
numerical evaluation of the multiple integrals involved in solving the
estimation equations. The splitter item technique in combination
with BMI becomes particularly interesting when estimating com-
plex IRT models, like testlet response models (Bradlow, Wainer and
Wang, 1999), models with multidimensional latent abilities (Béguin
and Glas, 2001), and multilevel IRT models (Fox, 2004; Fox and
Glas, 2001, 2003) and it is in the realm of these models that more
research needs to be done.
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4.7 Appendix

The marginal BM distribution in equation (4.16) of the BMI parame-
ter can be obtained by integration using a noninformative reference
prior for A; and ~y,..

o0
(e | 7 x) = / / 5\ | 2% 710 02)p (V1 02 | 7 1) drydo?

* —(n+r _1 ¢ —
x / / 00( +r+l) exp| 5 ( [(Ak - Ak) — V’iQVlll
0 0 20'0
t
(‘)’k - ;Yk,xl):| W22 [()\k - )\k) - V§2Vf11 (‘Yk - ;Yk,xl):|
+(n — 2>33 + (’Yk - ’A)’k,xl)tvﬁl (’Yk - ’S’k,xl)))d’kaag

where Q0 = {7, € R?} and way = (va2 — V§2V1_11V12)71. Terms can
be gathered together by defining Ay = (7;, Ax) and using a specific
form of the inverse of a partitioned full rank symmetric matrix, that
is,

-1 -1 t —1 -1
-1 _ |V11 + Vi1 V12W22Vi5V g —Vi{ V12W22

] . (4.17)

t —
—W22Vi9Vyy W22

It follows that

- il —1
P(Ak | 1) / / UO( +r) exp<2 ((n — 2)8% + (Ak—
Ak)tv_l (Ak — Ak))d'ykdag
R ~ —(v+r+2)/2
x /Q[V 53+ (A — )V (Mg = Ay dyy, (4.18)

where v = n — r. This last step in equation (4.18) follows from the
integral formula

& —a 1
/ g~ P+ exp(T)dx = —a7P*T(p/2), (4.19)
0 i 2
with a,p greater than zero and I'(.) the Gamma function. Finally,
the right hand side of equation (4.18) can be recognized as the multi-
variate t-distribution. As a result, the marginal distribution of A, a
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subset of Ay, has a multivariate t-distribution (Box and Tiao, 1973)

>\k ’ zp ~ to |:Xk, S%Vgg, I/:| . (4.20)
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FIGURE 4.1. Splitting the observed item response data.
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FIGURE 4.2. Posterior distributions of BMI parameters representing dif-
ferences in item difficulties, corresponding to splitter items 12, 17, and 20.
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FIGURE 4.3. Threshold parameter estimates given all observed data, and
the item responses of the missing and observed group where item 20 served
as a splitter item.
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FIGURE 4.4. Posterior distributions of BMI parameters representing dif-
ferences in item thresholds corresponding to splitter items 20.
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TABLE 4.1. Experiment 1: The response mechanism depends upon the examinee ability and item difficulties.
Splitter Item 20

@Cu ; v\ovmv ﬁovmm_u ; v\%mv Nws.:.mﬁu 7 V\D@mv @Ssmﬂy ; onoMV
Item b Mean sd Mean sd Mean sd BMI,,,;s HPD
1 .90 91 .03 1.55 .07 .64 .03 —.12 ﬁl 19, — Oﬂ
2 .89 91 .03 1.69 .08 .62 .03 —.12 ﬁl 19, I.OE
3 .1 48 .02 1.16 .06 .19 .03 —.16 [—.23, —.09]
4 1.17 113 .03 1.70 .08 88 .03 —.09  [-.16,—.02]
5 1.50 1.48 .04 2.45 .18 1.18 .04 —.07 [—.14, —.01]
6  —.66 —63 .02 00 .04 ~90 .03  —10  [-.17,—.04]
7 1.10 1.11 .03 1.81 .09 .81 .03 —.13 [—.19, —.05]
8 —1.41 —1.39 .04 —.74 .04 —1.71 .06 —.07 ﬁl.Hmv |.©:
9 —.63 —.64 .03 .05 .04 —-.95 .04 —.13 [—.19, —.05]
10 1.06 1.02 .03 1.75 .09 72 .03 —.15 ﬁl.wwu |.©d
11 —1.10 —1.18 .04 —.52 .06 —1.44 .05 —.06 [—.14,.01]
12 .29 44 .05 97 .07 .16 .07 —.04 ﬁl.HH“ .Oﬁ
13 12 12 .03 78 .07 —.15 .03 —.10 ﬁl.Hﬂ I.Owg
14 44 .63 .05 1.14 .07 37 .07 —.03 [—.11,.05]
15 .24 A7 .03 .95 .08 —.12 .03 —.12 ﬁl.Hov I.OE
16 .29 45 .04 .95 .07 .24 .07 —.02 [—.10,.05]
17 .00 13 .05 65 .06 —21 .08  —.02 [—.10, .06]
18 —1.09 —1.09 .03 .37 .06 —1.38 .05 —.08 [—.16,—.01]
19 —.15 —.18 .03 — — —.41 .03 —.06 ﬁl.Hmr .Ow_
20 1.00 1.14 .05 — — — - - -
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5
Fixed effect IRT Model

ABSTRACT: A fixed effect item response theory (IRT) model
is developed for modeling group specific item parameters. Two
applications are presented. The first application is that the pro-
posed model can be used to detect whether a response mecha-
nism is ignorable using the splitter item technique. The second
application is the detection of differential item functioning. In
the latter application, the fixed effect item parameters can model
item parameter differences between groups. Simulation studies
are presented to show the feasibility and performance of the
method on both applications.

KEYWORDS: analysis of variance, differential item functioning,
fixed effect, item response theory model, MCMC.

5.1 Introduction

Interest is often focused on the possibility that educational and psy-
chological measures are biased against a particular group of respon-
dents. So-called external bias occurs when test scores have differ-
ent correlations with non-test variables for two or more groups of
examinees. Another form of bias occurs when correlations among
item responses differs across two or more groups. This measurement
bias leads to noninvariant measurement scales (e.g., the measure-
ment scale is not invariant across groups). This form of item bias is
denoted as differential item functioning (DIF). DIF is often modeled
using IRT. In the framework of IRT, an item displays DIF when any
of the item parameters differs across groups. Statistics for detection
of DIF based on IRT models are summarized in Muraki, Mislevy,
and Bock (1987), and Thissen, Steinberg, and Wainer (1988, 1993),
and references therein. The detection of DIF is complicated due to
the fact that group differences in the distribution of the latent vari-



86 5. Fixed effect IRT Model

able cause differences in response probabilities that as such are not
signs of DIF. In other words, differences in the ability distribution
between groups do not constitute DIF. Items are biased or nonin-
variant when respondents at the same level of the latent variable
have different response distributions on the item.

Another common problem in educational and psychological mea-
surement is the occurrence of nonignorable missing data. Rubin (1987)
identified a number of situations in which statistical inferences based
on the observed data and ignoring the distribution of the missing
data indicators become biased. Roughly speaking, this bias does not
occur if the distribution of the missing data indicator does not de-
pend on the missing data. If the missing data cannot be ignored, a
concurrent probability model must be defined for the observed and
missing data, and inferences are made averaging over the missing
data. Examples of such models were proposed by O’Muircheartaigh
and Moustaki (1999, also see, Moustaki & O’Muircheartaigh, 2000;
Moustaki & Knott, 2000; Bernaards & Sijtsma, 1999, 2000; Conaway,
1992; Park & Brown, 1994; Holman & Glas, 2005). Below it will be
shown that a splitter item technique (Molenaar 1983; Van den Wol-
lenberg, 1979) can be used for testing ignorability. In the splitter
item technique, the sample of respondents are splitting up in two
groups depending whether the response on the splitter item was ob-
served or missing. Differences in item parameter estimates obtained
in the two groups may then indicate nonignorable missing data.

In general, a unidimensional IRT model is appropriate for data in
which a single common factor, say a latent variable, underlies the
item responses. The person’s response pattern on a particular set of
items provides the basis for estimating the level on the latent variable
level. IRT models involve an assumption about the distribution of
the item response given the latent variable. Besides on the latent
ability variable, the item response function also depends on item
parameters which are distinct from the ability variable. In a fixed
effect IRT model, group specific item parameters are added to the
response function to model group specific fixed effects such as DIF,
or differences in response behavior between subgroups formed using
a splitter item that might indicate a violation of the ignorability
assumption.

Though the approach that will be sketched below is quite general,
the two-parameter logistic and normal ogive models will be used
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as an example. Estimation will be developed in a Bayesian frame-
work. The development of powerful sampling-based estimation tech-
niques have stimulated the application of Bayesian methods. Markov
chain Monte Carlo (MCMC) methods, such as Gibbs sampling and
Metropolis-Hastings (M-H), can be used to simultaneously estimate
all model parameters. An MCMC implementation will be introduced
for the sampling of all model parameters that combines various ad-
vantages of different MCMC schemes for sampling IRT parameters.

In the next section, a general notation is given for fixed effect IRT
models. Then, it will be shown how the model can be used to detect
nonignorable missing data when using the splitter item technique.
Next, it will be shown how the model can be used to explore DIF.
Both applications are illustrated using artificial data. The last section
contains a discussion and suggestion for further research.

5.2 A Fixed Effects IRT Model

The two-parameter normal ogive (2PNO) and the two-parameter lo-
gistic (2PL) models can be used to describe the relationship between
a set of binary response items and a latent variable. Let a response
of a person ¢ to an item labeled k£ be coded by a y;x. The probability
of a correct response of a person ¢ on an item k is defined as

[1 + exp(—D(axb; — bk))] _17

for the 2PL
®(ardi — by),
for the 2PNO,

P(yir =1 0;,a1,bx) = (5.1)

where aj is the item discrimination parameter, and by is the item
difficulty parameter in both models. The item parameters will also
be denoted by &, with & = (a, bi)t. Function ® is the cumulative
standard normal distribution, and the factor D, usually taken to
be 1.7, is a scaling factor introduced to scale the parameters of the
logistic function as close as possible to the parameters of the normal
ogive function.

Let Ay; express the difference between a group j specific diffi-
culty parameter, indexed k, and a fixed difficulty parameter by across
groups indexed j = 1,...,J. So, group specific difficulty parameters
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by; can be expressed as

where the difference Ay; is called a jth factor level effect or the jth
treatment effect in ANOVA terms with the usual constraint that
> Ak =0fork=1,... K.

In a regression approach equivalent to an one-way ANOVA a de-
sign matrix x defines the grouping structure. Indicator variables are
needed that take on values 0,1, or —1. It follows that:

911 —1

021 -1

On,1 —1

912 -1

a0 — (bk + X)\k) = <Zk> -

Onga —1 [ \F

O1n, —1

1 o o0 --- 0

1 o o0 -~ 0

1 o o0 -~ 0 el

0 1 o --- 0 g2
S N e
0 1 o --- 0 :
S S AkJ—1
-1 -1 -1 - -1
-1 -1 -1 - -1

such that Ay = —Ap1 — A\g2 — -+ - — Apj—_1. The indicator variable

x denotes the specific group-membership. As a result, in the fixed
effects IRT model the probability of a correct response of a person i
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on an item k, is defined as

[1+ exp(—D(ard; — (b + xtA))] 7

for the 2PL
CI)(akHZ — (bk + X;?Ak)),
for the 2PNO.

P(yir = 1| 0, ar, by, A) =

(5.3)
In the present paper, attention is focused on differences in difficulty
parameters. However, the fixed effects IRT model is easily extended
to model differences in discrimination parameters across groups.

In the fixed effects IRT model, interest is focused in the individual
group means of item parameters \;;, Equation (5.2), and they are of
interest in themselves. The interest is not focused on the variance in
item parameters across groups. In that case, the \; are to be con-
sidered as random effects, and they are specified as independently
distributed observations with a distribution. Subsequently, main in-
terest is focused on this distribution. In the fixed effects approach
it is a priori assumed that the Ap; bear no strong relationship to
one another. In the cases where might be more realistic to assume
that the Ap; are thought of as coming from a distribution, numer-
ical problems occur when estimating variance components given a
small number of groups. In this situation a fixed effects analysis
can be very useful and avoids the complex statistical modeling of
a mixture distribution and specification of hyperprior distributions.
Fixed effects analyses from the Bayesian viewpoint have been tack-
led by, among others, Jeffreys (1961) and Lindley (1965). A random
effects approach in IRT modeling has been considered by Janssen,
Tuerlinckx, Meulders, and De Boeck (2000). In that approach, item
parameters are considered as independent observations from a group
specific population distribution, that is, the items in the test are seen
as a random sample from this distribution. Subsequently, interest is
focused on this item population distribution.

5.3 Testing for Non-Ignorable Missing Data

Holman and Glas (2005) propose an IRT model for taking non-
ignorable missing data into account. In this model, the observed
responses and the missing data indicators are modeled using distinct
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IRT models, and the two latent variables associated with these two
IRT models have a two-variate normal distribution. If the covariance
between the two latent variables is non-zero, ignorability is violated.
In that case, if the parameters of the IRT model for the observed
responses are estimated ignoring the missingness, they prove to be
biased (Holman & Glas, 2005). To assess this violation of ignorability,
the data can be divided into two samples using a splitter item, say
item k. The first group consists of respondents who have an observed
response on this item, the second group consists of respondents who
have a missing value on this item. Accordingly, the first sample will
be denoted as the observed group; the observed item responses of
individual ¢ except those to item k, yz(_ol]fs) withdp=1,1=1,...,n.
The second sample will be denoted as the missing group: the ob-
served item responses of individual ¢ except those to item k, yz(;n]zl
with d;p; = 0, ¢ = 1,...,n. In fact, the observed data is grouped in
two sets. This can also be accomplished by specifying the indicator
variable x in such a way that it represents the grouping structure
defined by the splitter item. In that case, the fixed effects parameter
A represents item parameter differences between the observed and
missing data set. Interest is focused on the marginal posterior distri-
bution of A, p(/\ | y). When the missing data are nonignorable, the
item parameters differ across groups, and the estimated A values are
different from zero. So, the splitter item technique is used to detect
a nonignorable missing data mechanism by testing whether the fixed
effects parameters are significantly different from zero.

5.4 Modeling Differential Item Functioning

The value of the ICC at a specific value for the latent variable corre-
sponds to the conditional probability of a correct response given the
level of the latent variable. When an ICC differ across groups then
it is said that this item function differently and exhibit DIF. So, re-
spondents across groups with the same level of the latent variable
have different probabilities of scoring this item correct.

Several techniques for detection of DIF items based on IRT mod-
els have been proposed (see, .e.g., Glas, 2001; Glas & Verhelst, 1995;
Hambleton & Rogers, 1989; Kelderman, 1989). In most cases, at-
tention is focused on differences in response probabilities between
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groups conditional on the level of the latent variable. Thissen, Stein-
berg, and Wainer (1993), and Glas (1998, 2001) considered DIF as a
special case of IRT model misfit. They both used statistical tests in
an IRT framework to explore DIF. In a frequentist framework, Glas
(1998, 2001) modeled DIF in a common IRT model using multiple
background or categorical dummy variables, where these variables
model DIF. In this approach, the parameters of the IRT model are
estimated and Lagrange Multiplier (LM) tests for DIF, based on the
model extension using background variables, are performed for each
item. In the present Bayesian approach, all parameters of the fixed
effects IRT model are simultaneously estimated. Subsequently, the
Bayes factor can be used to identify DIF items.

As an example, consider items that may function differently across
groups, say, gender and nations. To model differences in ICC’s across
gender (s = 1,2) and nations (r = 1,..., R) define a fixed effects
(probit) IRT model as:

P (yiksr = 1| 0i, ak, bi, Mets, Akzr) = @ (ari — (b + Mets + Ai2r)) s

(5.4)
where \j5 is the main effect of being female (s = 2), and Ay, is the
main effect of being grouped in nation r, with A;; =0 and Ao; =0
taken as a baseline related to a so-called focal group. Subsequently,
let indicator variable x represent this grouping structure, and let
the fixed effects IRT model with two grouping variables be given by
(5.3). Note that interaction effects between gender and nations are
easily incorporated.

5.5 Estimating Model Parameters

Direct posterior inference is not possible since the joint posterior dis-
tribution is very complex. However, samples from this distribution
can be obtained using MCMC methods. Then, inferences concern-
ing the model parameters can be made using the sampled values.
Below, M-H and Gibbs sampling algorithms are used for sampling
parameter values for the item parameters, fixed effects parameters,
and the ability parameters from their posterior distributions. Using
the method of data augmentation, realizations from a complicated
posterior density can be obtained by augmenting the variables of in-
terest by one or more additional variables such that sampling from
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the full conditional distributions is easy. Albert (1992) constructed
an MCMC chain using the auxiliary variable method for estimat-
ing the two-parameter normal ogive model. Generating realizations
from the full conditionals is complicated but with the introduction of
this augmented variable the full conditionals are tractable and easy
to simulate from. Maris and Maris (2002) developed an auxiliary
variable method for logistic IRT models that handles different prior
distributions in a flexible way. The augmented data are defined in
such a way that each full conditional becomes an indicator function
with bounds specified by the other parameter values. As a result, the
sampling of the parameters is easy. However, the sampled values are
highly correlated due to this incorporated dependency structure. As
a result, the samples cannot be drawn freely from the target distribu-
tion but are restricted to a subspace specified by the other parameter
values.

In the present paper, a combination of both methods for simulta-
neously estimating the parameters of a fixed effects two-parameter
IRT model is outlined. In this approach, it is easy to handle different
kinds of prior information, the convergence is fast, and the samples
are not highly correlated. Fox and Hendrawan (2005) proposed this
method for the MCMC estimation of two-parameter IRT models.

Let £(0,1) and A(0, 1) denote the standard logistic and standard
normal distribution function, respectively. Further, define augmented
data z,

£(0,1),

for the 2PL
N(0,1),

for the 2PNO,

Zik | Yik, Oy ay b, A ~ (5.5)

where y;1; is the indicator that assumes a value one if z;; > D((by +
xtAr) — axb;) and zero otherwise (D = 1.7 for the 2PL and D =1
for the 2PNO model). Note that the augmentation step defines a
probit or logit analysis. The full conditional distribution of the model
parameters are each tractable and easy to simulate from given the
augmented data.

e Full conditional distribution of 8. The prior for 8 is a normal
distribution with mean parameter p and variance parameter
o. It follows that
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p(ez ‘ Y.z, a, b7 A,,U,,O') X Hl(zlk Z D((bk + X'tLAk) - akal))ka
k

I(zig, < D((bg +xIA) — apy)) Yk p(60; | p, o)

t .
= < max (b + X Ak) = 2ik/ D < b, <
klyi=1 aj
b ‘IXk) — zi/ D
min (bk + X3 M) = Zik/ )p(ei | 1, 0),
kly;x=0 ag

where I(-) is an indicator function assuming a value one if
the condition in the argument is fulfilled and is equal to zero
otherwise.

e Full conditional distribution of a,b,\. The fixed effects para-
meters, A, are taken to be a priori exchangeable. That is, Az;,
7 = 1,...,J are assumed independent and normally distrib-
uted with mean zero and variance oy, with a large value for
oy to specify a diffuse proper prior and to specify indepen-
dence among the fixed effects parameters. Independent proper
noninformative priors for the discrimination and difficulty pa-
rameters are specified, that is,

p(ag, br) = plag)p(by) x I(ar € A)I(by € B),

where A and B are a sufficiently large bounded intervals in R™
and R, respectively. As a result,

p(a,b,\) = p(ag)p(bk) Hp()\kj) o Hp(/\kj)f(ak e A)I(by € B).
J k.j

Define augmented data z;,

(5.6)

where H = D(0, —1, —x), Ex = (ag, b, Ax)!, and €, equals the
augmented data z; and they are standard normal or standard
logistic distributed. The full conditional distribution can be
specified as follows

=y | 25,6 ~ N (En, c(H'H) ) p(E8), (5.7)
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where

£, = (H'H) 'H'z},

and ¢ = 1 or ¢ = 72/3 in case of 2PNO or 2PL augmented
data, respectively. Note that the standard logistic cumulative
distribution resembles the normal cumulative distribution with
mean zero and variance 72/3. A M-H probability can be used
to correct any deficiencies in the approximation, since the tail
of the logistic distribution is somewhat longer. However, almost
every value is accepted since both distributions are quite com-
parable. In fact, a very good proposal distribution is specified
in equation (5.7) for the fixed effects 2PL model.

5.6 Bayesian Inference

Summary statistics, such as the posterior mean or median, are used
to report the results. A Bayesian confidence interval can provide
information about the ‘most likely’ parameter values. In general, a
100(1 — a)% credible set, Cx(y), for A is any set of values with

I —a<PCAY)|y) —/C PRI )

It will be assumed that the (marginal) posterior density function
is unimodal. The null-hypothesis A = Ag is of particular interest,
however, it is not realistic to have a precise null-hypothesis. This is
better represented as

Hp : |A—Xo| <eversus Hy : |A— Ag| > ¢, (5.9)

where ¢ is "small". The point null hypothesis will be seen as an
approximation for the small interval null as in Equation (5.9). In
general, a Bayesian confidence region can be determined and conclu-
sions are directly drawn from this region. That is, Cx(y) provides
information about the location of A, its distance to Ay, and if this
distance makes a practical difference. Berger and Delampady (1987)
argued that Bayesian credible intervals are often inappropriate when
testing A = Ag with a specific value Ag. They stated that the like-
lihood of a special point Ag, say, outside a confidence region Cy(y)
is often not too much smaller than the average likelihood in C(y).
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As a result, there is no strong evidence for rejecting Ag. Besides
reporting a credible region, the Bayes factor can be used to test
the null-hypothesis. Note that the computation of the Bayes factor
against Hy is easily constructed from the MCMC output for estimat-
ing the fixed effects IRT model parameters. Let My denote the model
with A = A¢g = 0, subsequently, A is unconstrained in the fixed ef-
fects IRT model, denoted as M. Let E = (a,b,0) and assume that
p(A=0,B |y,M) = p(E | y, My). Then the marginal likelihood
under model My can be related to the marginal likelihood under the
fixed effects IRT model M (see, e.g., Chen, Shao, & Ibrahim, 2000;
Verdinelli & Wasserman, 1995):

p(y | Mo) = / p(y | &, Mo)p(E | Mp)d=

P(E | My) = o

= A=0E|M A=0,E M)d=E

/p(AZO’EM)p( | M)p(y | )
p(E | Mo) - -

= M/ — A=02 |y, M)dE.

p(y | M) p()\ZO’:|M)p( |y, M)

(
As a result, the Bayes factor for testing the null-hypothesis A

0
can be stated as:
p(E | My) _ = -
BF:/ — pA=0|E,y, M)p(E |y, M)d=E
ooz P =01 Ey M |y )
(5.11)

where the expectation is taken with respect to the marginal posterior
distribution p(Z | y, M). A single MCMC output denoted as =m),
(m=1,...,M) from the posterior distribution p(Z | y, M) can be
used to compute the Bayes factor. That is,

=(m)
BE — M- p(E™ | Mo) _olzm
BF =M § =0, (m)‘M)p(A_m_ Ly, M), (5.12)
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A special case occurs when p(E | A = 0, M) = p(E | My). Via
Equation (5.11) it follows that

p(E | A =0,M)
BF = A=0|E5y,M)pE M)d=
e 0H|M)p< |Zy, M)p(E |y, M)

A=0|E5y,M)pE M)d= .
= [ ST = 0 Iy Mp(E| v ME  (513)

_p(A=0]y,M)
pA=0[ M)’

which is known as the Savage-Dickey density ratio (Dickey, 1971).
Note that the Bayes factor in Equation (5.13) is reduced to estimat-
ing the marginal posterior density p(A | y, M) at the point A = 0.

In a different way, Klugkist (2004) derived an expression for the
Bayes factor, under comparable assumptions, that enables its compu-
tation via MCMC output under model M. In this approach the Bayes
factor is expressed as a ratio of two proportions, a ratio of priors,
and a ratio of posterior distributions, where the prior and posterior
distributions are defined for the constrained and the unconstrained
model. The ratios are estimated using the MCMC output.

5.7 Simulation Study

A simulation study was used to assess the performance of the MCMC
algorithm and to illustrate the usefulness of the fixed effects IRT
model. In simulation study 1, data were generated using a nonig-
norable missing data mechanism. In simulation study 2, data were
generated given DIF items.

5.7.1 Simulation Study 1

Analogous to Bradlow and Thomas (1998) and the example in the
previous chapter, response data were simulated as if students were
allowed to choose a subset of items. In this setup, for a subset of
items, responses were simulated for pairs of items. This was done in
such a way that for each person one response was generated for each
paired item. The response mechanism was such that an item response
was generated for the easier items within pairs with probability p; =
.95 and the harder item with probability ps = .05 if the persons’
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ability level was positive. If the persons’ ability level was negative,
an item response was generated for one of the items at random. So,
the distribution of the response mechanism depends on the ability
parameters @ underlying the observed responses and the difficulty
parameters.

Two groups were identified as follows: one group of respondents,
denoted as the observed group, responding to splitter item 20, and
the other group of respondents not responding to the splitter item,
denoted as the missing group. So, the last item, & = 20, was consid-
ered as a splitter item and the corresponding responses (observed/-
missing) were considered as a group indicator. It was expected that
the item difficulties varied over groups since the distribution of abil-
ities varied across groups. In the fixed effects IRT model, the ob-
served group was considered as the baseline group. The fixed effects
in Equation (5.3) represent item parameter differences between this
baseline group and the missing group.

In this simulation study, 5000 abilities and 20 difficulty parameter
values were generated from a standard normal distribution. Discrim-
ination parameters were generated from a log-normal distribution.
These parameter values were used to generate item response data
according the 2PNO model. The last ten items were considered as
paired items. The Gibbs sampling algorithm was used for estimating
the parameters of the fixed effects IRT model. A total of 10,000 iter-
ations were used for estimating the model parameters with a burn-in
period of 1,000 iterations. The fixed effects IRT model was identified
by fixing the scale of the latent variable with mean zero and variance
one.

In Table 5.1 are the posterior means and standard deviations given
of the difficulty parameters for different subsets of item response
data. The posterior means of p(b | yobs) correspond to the estimated
item difficulties given all observed item response data. It follows that
for most paired item the difficult item is overestimated and the easy
item is underestimated. The observed group consisted of the better
respondents, making item 20 since it was the easier item. The true
item difficulties are highly underestimated in the baseline group,
that is, the respondents in the observed group make the items ap-
pear more easy. The fixed effects are all positive and significantly
different from zero given the 95% HPD regions. As a result, the diffi-
culty parameter estimates for the missing group are a factor A higher
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in comparison to the difficulty parameter estimates in the observed
group. The Bayes factor for testing the null-hypothesis A = 0 equals
approximately zero. So, it can be concluded that the grouping of
responses according to values of the splitter item affects the statisti-
cal inference. The difficulty parameter estimates vary across groups.
The grouping of the data according to splitter item 20 resulted in
significant fixed group effects indicating that the way of grouping the
data (observed/missing) affects the results.
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5.7.2  Simulation Study 2

In this numerical example, data were analyzed to investigate the per-
formance of the fixed effects IRT model for detecting DIF items. In
four different setups, response patterns, y, were generated according
to a fixed effects 2PL model for 2000 persons and 10 items. DIF
was imposed on the item difficulties. The respondents were grouped
by gender (Male, Female) denoted by z; and nations (Dutch, non-
Dutch) denoted by z9 where a female Dutch was coded as 1 = 1 and
xo = 1 respectively. It was assumed that the groups of respondents
are homogenous with respect to the latent variable. Three data sets
were generated: (1) no DIF items denoted as model Mj, (2) main
effect of gender where A; = .25 for the last five items, denoted as
model My, and (3) main effects of gender and nations where Ay = .20,
Ao = .20 for the last five items, denoted as model Ms3.

The MCMC algorithm was used to simultaneously estimate all
model parameters given the generated item response data using the
2PL. The convergence of the MCMC chains was checked and it was
concluded the all MCMC chains converged within 1000 iterations.
Then, 10,000 iterations were made to estimate the posterior means
and standard deviations. Each model was identified by fixing the
scale of the latent variable to make the outcomes comparable.

Table 5.2 presents the fixed effects IRT parameter estimates given
data generated under model M; and Ms. The simulated difficulty
parameters are given under the label b. The difficulty parameter es-
timates and their standard deviations of the null-model with A =0
are given under the label p(b | y,A = 0). It can be seen that for
data generated under model M, the difficulty parameter estimates
of the null model resemble the true parameter values since there are
no DIF items simulated. The simulated data were used to estimate
the parameters of a fixed effects IRT model where the fixed effects
represent a main effect of gender. This model assumes that the item
parameters differ across groups of males and females. The difficulty
parameters estimates corresponding to the female group using this
fixed effects IRT model also resemble the true values. Note that the
estimated standard deviations are slightly higher in comparison to
the corresponding estimates of the null model. This follows from the
fact that the the estimates of the fixed effects IRT model are group
specific, and so they are based on less observations. The mean of the
fixed parameter estimates, A is given under the label p(A | y). The
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estimated fixed effects are close to zero, and the 95% HPD regions
show that none of the effects differ significantly from zero. This cor-
responds with the fact that the data were generated under model
My with no DIF items. The Bayes factor for testing the hypothe-
sis A = 0 equals exp(8) and provides strong evidence that the null
hypothesis should not be rejected.

The simulated difficulty parameters according to model My are
given under the label b and correspond to the baseline group (Fe-
male, 1 = 1). For the last five items, a gender effect was imposed
(Ax = .25,k =6,...,10), and it can be seen that the estimates of the
difficulty parameters under the null model differ from the true val-
ues for these last five items. The parameter estimates of the baseline
group according to the fixed effects IRT model resemble the simu-
lated difficulty parameters since the model captures item parameter
differences between groups. The true main effects are slightly over-
estimated by the estimated fixed effects parameters but they are all
significant for last last items. The positive sign of the estimated fixed
effects indicates that the item difficulties in the male group are more
difficult. The estimated item difficulties in the male group are the
sum of the estimated fixed effects and the estimated difficulties in the
female group. Here, the Bayes factor equals exp(—34) and provides
strong evidence that the null hypothesis should be rejected.
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TABLE 5.2. Parameter estimates of the fixed effects IRT model given data generated under model M; and Ms.

pb|y,A=0) pblyz1=1) p(Aly)
Item b Mean sd Mean sd Mean HPD
My 1 —1.09 —1.10 .05 —1.07 .07 .07 [—.14,.29]
2 1.21 1.16 .05 1.20 .08 .07 [—.14, .29]
3 1.46 1.57 .06 1.59 .10 .09 [—.21,.37]
4 —.41 —.42 .03 —.37 .05 .09 [—.06, .25]
5 .60 .66 .04 .74 .06 .15 [—.05,.31]
6 —.05 —.05 .03 —.06 .04 —.02 [—.17,.11]
7 —.19 —.24 .03 —.27 .05 —.06 [—.22,.09]
8 —.08 —.15 .03 —.11 .04 .07 [—.08,.22]
9 —.34 —.39 .03 —.35 .05 .09 [—.06, .25]
10 .20 .19 .03 .14 .04 —.11 [—.28,.03]
Mo 1 —.28 —.23 .03 —.29 .05 —.11 [—.27,.05]
2 —2.10 —2.28 .08 —2.55 27 —.61 [—1.72,.12]
3 —.38 —.41 .03 —.38 .05 .08 [—.09, .206]
4 .59 .63 .04 .61 .05 —.05 [—.23,.12]
5 .49 .58 .03 Y .05 —.02 [—.21,.16]
6 1.28 1.59 .06 1.37 .09 —-.39 [—.71, —.09]
7 —1.32 —1.16 .05 —1.32 .09 -.31 [—.56, —.08]
8 —-.33 — .47 .03 —.33 .05 —-.30 [—.48, —.14]
9 —1.01 —.92 .04 —1.06 .07 —.30 [—.53, —.10]
10 —.65 —.49 .03 —.63 .05 —.25 [—.41,—.09]
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TABLE 5.3. Parameter estimates of the fixed effects IRT model given data
generated under model Ms3.

p(b|y7>‘:O) p(b|Y7$1:07x2:O)

Item b Mean sd Mean sd
M3 1 .04 .02 .03 —.04 .08
2 .07 .09 .03 .09 .07
3 .06 .06 .03 11 .08
4 .06 .07 .03 11 .07
5 .07 .08 .03 12 .07
6 —.17 .04 .03 —.19 .08
7 .23 .39 .03 21 .07
8 —.10 .15 .03 —.10 .07
9 —.06 11 .03 —.02 .08
10 .00 .22 .03 —.02 .07

In Table 5.3 presents the parameter estimates given data gener-
ated under model M3. The true simulated difficulty parameters for
the baseline group (non-Dutch Males) are given under the label b.
The difficulty parameter estimates of the null-model, with fixed ef-
fects equal to zero, differ from the true values with respect to the last
five items. The difficulty parameters of these DIF items are correctly
estimated by the fixed effects IRT model. That is, the estimated diffi-
culty parameters of the baseline group resemble the true parameters.

The fixed effects parameters are estimated for the four different
groups. In Figure 5.1 are the estimated posterior distributions given
of the group specific fixed effects parameters. The dotted lines cor-
respond to the last five items of the test. In the group of Dutch-
Females, the last five items are DIF items due to the main effect of
gender with Ay = .2. It can be seen that the fixed effects parameters
of the DIF items are distributed around .2 but only two are signif-
icantly different from zero. The posterior distributions of the fixed
effects parameters of the non-DIF items are centered around zero.
The estimated posterior variances may seem large but they are based
on the size of the groups and not the entire sample size. A main effect
of nations, Ao = .2, can be detected in the group of Dutch-Males.
That is, three of the five posterior distributions of the fixed effects
parameters corresponding to DIF items have a mean significantly
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different from zero. The true difficulty parameters in the group of
Dutch-Females are much higher due to main effects of gender and
nations. It can be seen that the corresponding estimates of the fixed
effects are approximately .4 for the DIF items, and around zero for
the non-DIF items. The Bayes factor equals exp(—56) and supports
the fixed effects IRT model without restricting the fixed effects to be
zero. In conclusion, the fixed effects IRT model captures differences
in difficulty parameters across groups and detects DIF items. As a
result, the measurements of the latent variable are more reliable since
differences in item parameters across groups are taken into account.
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FIGURE 5.1. Posterior distributions of fixed effects parameters for
the four groups. (Clockwise from top-left: Male-non-Dutch, Dutch-Male,

Dutch-female, non-Dutch-Female)
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5.8 Discussion

Fixed effects IRT models consisting of difficulty parameters that are
allowed to vary across groups, are discussed. In contrast to random
effects item parameters, interest is focused on the fixed effects and
not on the variance in item parameters across groups. T'wo applica-
tions are considered: (1) detecting nonignorable missing data, and
(2) detecting and/or modeling DIF items. It was shown that the
fixed effects IRT model can be used for detecting nonignorable miss-
ing data in combination with the splitter item technique. That is,
the observations of the splitter item (observed/missing) defines the
grouping of observed item response data, and the fixed effects pa-
rameters model item parameter differences between these groups.
Significant fixed effects parameters indicate item parameter differ-
ences between groups. In the second simulation study, it was shown
that the fixed effects parameters can comprehend DIF items since
differences in item parameters between groups are properly modeled.
So, the fixed effects IRT model can be used to measure a latent vari-
able in the presence of DIF items. It can also be used to detect DIF
items in combination with a Bayes factor for testing the hypothesis
that the fixed effects are zero.

It was shown that the proposed MCMC method for simultaneously
estimating all parameters yields acceptable estimates. The estima-
tion method can handle the 2PL and 2PNO model in three compara-
ble sampling steps. This analogy makes the implementation easier.
In general, the 2PNO model may be preferred since it has some
computational advantages.

It has been shown that the Bayes factor for testing the null-
hypothesis that all fixed effects are zero follows from evaluating the
marginal posterior distribution of the fixed effects parameters in the
point zero. This approach can be extended to facilitate the com-
putation of Bayes factors for other hypothesis concerning problems
of choosing between alternative models. For example, in the same
way it can be tested whether all item discrimination parameters are
equal. Bayesian inference concerning the fixed effects IRT model can
also be based on HPD regions. Therefore, HPD region can be de-
fined for the fixed effects IRT model to test hypotheses by deciding
if a given point lies inside or outside the confidence region. Then, for
example, testing the equality of difficulty parameters across groups,
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all fixed effects are zero, can be done by computing the probability
on a HPD region that just includes the point zero.

Finally, the extension of the fixed effects IRT model to capture
differences in discrimination parameters across groups is easily done
by extending the design matrix x. In that case, the design matrix
is extended with the latent variable and the fixed effects parameters
represent difficulty and discrimination parameter differences across
groups. Further research will also focus on population group differ-
ences in the distribution of the latent variable. The framework of
the multilevel IRT model (Fox, 2004; Fox & Glas, 2001, 2003) can
be used to model population differences on the latent variable but
it assumes that item response curves are the same for all groups.
Problems occur due to the fact that the fixed effects parameters and
population parameters vary across the same groups, which results in
an identification problem. A possible solution might be found in find-
ing identifying constraints such that the scale of the latent variable
is identified and common across groups, and item and fixed effects
parameters can be estimated with respect to this scale.
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Synopsis

The handling of nonignorable missing data in psychometrics is not
fully developed, but in recent years the attention for these problems
in the application of latent variable modeling (see for instance Mous-
taki, 1996; O’Muircheartaigh & Moustaki,1999; Moustaki & Knott,
2000, Holman & Glas, 2005) is much increased. In educational mea-
surement, most literature and software packages ignore missing data.
However, this is inappropriate when the ignorability principle de-
fined by Rubin (1987) does not hold. In these cases, the estimation
of parameters ignoring the missing data often leads to biased results
(Holman & Glas, 2005).

This thesis discusses methods to detect nonignorable missing data
and methods to adjust for the bias caused by nonignorable missing
data, both by introducing a model for the missing data indicator
using item response theory (IRT) models.

In Chapter 2, a model based procedure that handles nonignorable
missing data in the framework of IRT is presented. The relevant IRT
model for the observed data is estimated in combination with an
IRT model for the missing data process. The two IRT models are
connected by invoking the assumption that their latent person pa-
rameters have a joint multivariate normal distribution. The model
parameters are estimated using marginal maximum likelihood. As an
example, the generalized partial credit model is used to model the
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observed data while the Rasch model is used to model the missing
data process. The simulation studies conducted with both dichoto-
mous and polytomous data show that the bias in the item parameter
estimates obtained ignoring the missing data process are reduced by
using an explicit latent variable model for the missing data process in
the estimation. The bias is further reduced when observed covariates
are included in the IRT model for missing data in the estimation of
the data.

The approach in Chapter 2 is further elaborated in Chapter 3 for
a situation where a test is administered in a limited-time condition.
The time limit condition leaves items at the end of the test unan-
swered by the examinee, i.e., the missing data in particular appear
consecutively in the items at the end of a test. The cause of this miss-
ingness is usually related to the person’s ability: the lower the ability
the larger the number of items that are left unanswered at the end of
the test. Thus, in this case the mechanism causing the missing data
should not be ignored. Following the method in Chapter 2, the data
are modeled using a combination of two IRT models: The observed
response data are modeled by the generalized partial credit model
(in particular, 2PL model) and the missing data are modeled by the
sequential model also known as the steps model. Again, the two IRT
models are connected by invoking the assumption that their latent
person parameters have a joint multivariate normal distribution and
the parameters are estimated using marginal maximum likelihood.
Results of the simulation studies show that when the model for the
missing data process is included in the estimation together with the
model for the observed data, the bias in the item parameter estimates
remains comparable to the base line obtained with ignorable miss-
ing data. Further, excluding the model for the missing data process
leads to considerable bias, that increased with the extent of the vi-
olation of ignorability. A real data set was analyzed to assess the
impact of the model in practice. Specifically, including the missing
data process lead to an increase of the estimate of the global relia-
bility of the test.

In Chapter 4, two methods based on the splitter item technique
are proposed to detect a nonignorable missing data process. So the
method aims at making decisions whether the missing data are ignor-
able or not. The sample of respondents is divided into two groups.
The first group consists of respondents that have an observation
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on the splitter item and the second group consists of respondents
that do not have a response on the splitter item. Then, it is tested
whether the item parameter estimates differ across the two groups.
Two methods are considered. Both apply to IRT models for binary
or ordinal responses estimated using a Bayesian method and MCMC.
In the first method, all parameters of an IRT model for binary or
ordinal responses are estimated given the subsets of item response
data. Then, summary statistics of the estimated marginal posterior
distributions of the item parameters are used for detection of differ-
ences. In the second method, values of IRT model parameters and,
as an additional sampling step, values of so-called Bayesian modifi-
cation indices (BMI) are sampled using MCMC. These BMI values
provide information regarding any fluctuations in item parameter
values across groups. They are estimated using MCMC and do not
interfere with the estimation of the other model parameters. So the
BMI values are obtained as a by-product of the MCMC algorithm
for estimating the parameters of an IRT model. It is shown that the
BMI distribution is a good approximation of the true marginal pos-
terior distribution of the group-specific item parameters.

The last chapter, Chapter 5 of this thesis discusses fixed effects IRT
models that include item parameters that are allowed to vary across
groups. The models are used for modeling group specific item pa-
rameters. The proposed models were applied to detection of non-
ignorable missing data and for detecting and modeling differential
item functioning (DIF). For the detection of nonignorable missing
data, a splitter item defines the grouping of the item response data.
The partitioning of the sample is based on whether or not there is a
response on the splitter item. The fixed effects item parameters (as
opposed to the often used random effects item parameters) model
the group effects. Significant fixed effect parameters indicate that
the item parameters differ between groups. The estimates are com-
puted in a Bayesian framework using MCMC. The MCMC estima-
tion method handles the 2PL and 2PNO model in three comparable
sampling steps. The Bayesian inference concerning the fixed effects
IRT model is based on HPD regions and Bayes factors. The HPD
region is defined for the fixed effects IRT model in testing hypothe-
ses in deciding if a given point lies inside or outside the confidence
region. This way the null-hypothesis stating that all fixed effects are
zero (the group-specific item parameters are equal) can be tested.
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It is shown that a Bayes factor can be used for testing comparable
null-hypotheses. Simulation studies are used to evaluate the perfor-
mance of the procedure.



Samenvatting

Methoden voor analyses van data met niet-negeerbare ontbrekende
gegevens (non-ignorable missing data) zijn in de psychometrie nog
niet volledig ontwikkeld, maar de afgelopen jaren is de aandacht voor
het probleem van ontbrekende gegevens in relatie tot de schatting
van parameters in modellen met latente variabelen sterk toegenomen
(Moustaki, 1996; O’Muircheartaigh & Moustaki,1999; Moustaki &
Knott, 2000, Holman & Glas, 2005). In de meeste literatuur over on-
derwijskundig meten en de meeste software die in dat kader gebruikt
wordt, worden ontbrekende gegevens genegeerd. Dit is echter niet
correct als niet aan het negeerbaarheidprincipe (ignorability princi-
ple, Rubin, 1987) voldaan is. In die gevallen zijn de parameterschat-
tingen onder een model waarbij de ontbrekende gegevens genegeerd
worden bijzonder onzuiver (Holman & Glas, 2005).

In dit proefschrift wordt een aantal methoden voor het ontdekken
van niet-negeerbare ontbrekende gegevens en methoden voor het cor-
rigeren van de schattingen gepresenteerd. In beide gevallen gebeurt
dit door het postuleren van een item response theorie (IRT) model
voor de indicator voor de ontbrekende gegevens.

In hoofdstuk 2 wordt een op een IRT model gebaseerde meth-
ode voor de het analyseren van data met niet-negeerbare ontbrek-
ende gegevens gepresenteerd. Het IRT model voor de geobserveerde
data wordt simultaan geschat met een IRT model voor de indicator



114 Samenvatting

voor de ontbrekende gegevens. De twee IRT modellen worden ver-
bonden via de veronderstelling dat hun latente persoonsparameters
een gezamenlijke multivariaat normale verdeling hebben. De para-
meters van het complete model worden geschat met een marginale
grootste-aannemelijkheid methode (marginal maximum likelihood
estimation method). Als voorbeeld wordt het gegeneraliseerde par-
tial credit model gebruikt voor de geobserveerde data en het Rasch
model voor de indicator voor de ontbrekende gegevens. Met sim-
ulatiestudies wordt aangetoond dat zowel voor dichtoom als voor
polytoom gescoorde antwoorden, de onzuiverheid in de schattingen
gereduceerd wordt door de introductie van een IRT model voor de in-
dicator voor de ontbrekende gegevens. De onzuiverheid wordt verder
gereduceerd als er covariaten in dit laatste model worden opgenomen.

Deze aanpak wordt verder uitgewerkt in hoofdstuk 3, voor een
test die is afgenomen onder tijdsdruk. Door tijdsdruk worden items
aan het eind van de test niet beantwoord. Het patroon van de ont-
brekende gegevens hangt meestal samen met het vaardigheidsniveau
van de studenten: hoe lager het vaardigheidsniveau, hoe meer items
aan het eind van de test niet gemaakt worden. Daarom mag het
mechanisme dat de ontbrekende gegevens veroorzaakt heeft niet wor-
den genegeerd. Net als in hoofdstuk 2 worden de data gemodelleerd
met een combinatie van twee IRT modellen: de observaties worden
gemodelleerd met het gegeneraliseerde partial credit model, terwijl
de indicator voor de ontbrekende gegevens wordt gemodelleerd met
het z.g. sequentiéle model, c.q. het stapjesmodel. Ook hier worden
de twee IRT modellen worden verbonden via de veronderstelling dat
hun latente persoonsparameters een gezamenlijke multivariaat nor-
male verdeling hebben en de schattingen worden berekend met een
marginale grootste-aannemelijkheid methode. Met simulatiestudies
wordt aangetoond dat de schattingen met behulp van dit model
met data met niet-negeerbare ontbrekende gegevens dezelfde pre-
cisie hebben als schattingen met geobserveerde data met negeerbare
ontbrekende gegevens via een IRT model zonder extra model voor
de indicator variabele. Verder blijkt ook hier dat het negeren van
niet-negeerbare ontbrekende gegevens leidt tot ernstige onzuiverheid
in de parameterschattingen. Om de impact van de methode in de
praktijk te evalueren wordt reéle data van een toets, gemaakt onder
tijdsdruk, geanalyseerd. Met deze data wordt getoond dat het mod-
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elleren van de indicator voor ontbrekende gegevens kan leiden tot een
belangrijke verandering van de schatting van de betrouwbaarheid.

In hoofdstuk 4 worden twee methoden voor het ontdekken van
niet-negeerbare ontbrekende gegevens voorgesteld die gebaseerd zijn
op de splitter-item techniek. Dus het doel van de methode is om
vast te stellen of de ontbrekende gegevens negeerbaar zijn, of niet.
Hiertoe wordt de steekproef van studenten verdeeld in twee groepen.
De eerste groep bestaat uit studenten die een antwoord gaven op
het splitter-item, de tweede groep bestaat uit studenten waar het
splitter-item niet beantwoord is. Daarna wordt getoetst of the schat-
tingen van de itemparameters verschillen voor de twee groepen. Dit
wordt gedaan met twee methoden. Beide methoden hebben betrekking
op IRT modellen voor binaire of ordinale responsie in een Bayesiaans
raamwerk. De schattingen worden berekend met een iteratief simu-
latieproces dat bekend staat onder het acroniem MCMC. In de eerste
methode worden alle itemparameters van een model voor binaire of
ordinale responsie geschat op de twee deelsteekproeven. Daarna wor-
den functies van geschatte marginale a-posteriori verdelingen van
de itemparameters gebruikt om wverschillen vast te stellen. In de
tweede methode worden in de MCMC procedure via simulatie zo-
genaamde Bayesiaanse modificatieindices (BMI) gegenereerd. Deze
indices geven informatie over de verschillen tussen de itemparameters
tussen de groepen. De simulatie van de indices heeft geen invloed op
de simulatie van de modelparameters; de gesimuleerde indices zijn
een bijproduct van de MCMC simulatie. Er wordt aangetoond dat de
verdeling van deze indices een goede benadering is van de verdeling
de groepsafhankelijke itemparameters.

In het laatste hoofdstuk, hoofdstuk 5, wordt een zogenaamd fixed-
effects IRT model besproken waarin de itemparameters kunnen var-
iéren tussen groepen. Deze modellen worden gebruikt voor het mod-
elleren van groepsspecifieke itemparameters. De modellen kunnen
worden toegepast voor het opsporen van niet-negeerbare ontbrek-
ende gegevens en voor het opsporen van vraagonzuiverheid (differ-
ential item functioning, DIF). Wanneer het doel is het opsporen van
niet-negeerbare ontbrekende gegevens wordt opnieuw een splitter-
item gebruikt voor het groeperen van de responsiedata. Ook hier is de
indeling van de steekproef gebaseerd op het al of niet geven van een
response op het splitter-item. Fixed-effects itemparameters (in tegen-
stelling tot de vaak gebruikte random effects itemparameters) mod-
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elleren de groepseffecten. Significante waarden van de fixed-effects
itemparameters geven aan dat de itemparameters variéren tussen
groepen. De parameter schattingen worden berekend met een MCMC
methode. Het toetsen van de hypothese dat alle fixed-effects gelijk
zijn aan nul (de itemparameters variéren niet tussen de groepen) kan
worden gedaan op basis van een betrouwbaarheidsinterval en op ba-
sis van een Bayesiaanse toets die bekend staat als Bayes factor. De
methoden worden geévalueerd met behulp van onderzoek op basis
van simulaties.
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